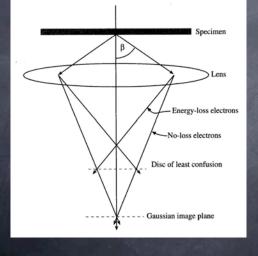


Scherzer Formula

$$\gamma(\mathbf{u}) = \frac{2\pi W}{\lambda} = \frac{\pi}{2} \left[C_{\rm s} \lambda^3 \mathbf{u}^4 - 2\Delta z \lambda \mathbf{u}^2 \right]$$

 $sin(\gamma(u))$: phase contrast transfer function $cos(\gamma(u))$: amplitude contrast transfer function

u: scattering vector (≈scattering angle)
W: wave aberation
λ: electron wavelength
Δz: defocus
Cs: spherical abberation constant


Spherical AberationGosGosCos<td c

nage plane Disk

 $ter = 2C_s\beta^3$

Electron waves further from the axis receive more phase shift.

Chromatic Aberation

Cc

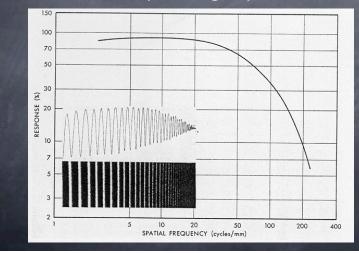
Limits resolution beyond $\sim 0.5 \text{ Å}$

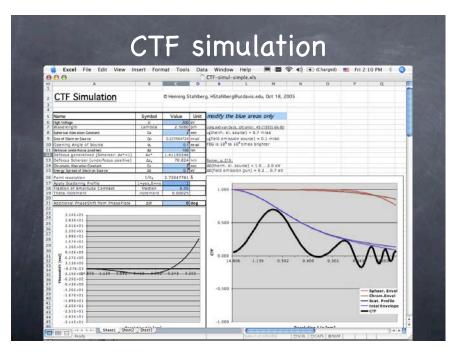
Electrons of lower energy are bent more strongly than those of zero-loss energy.

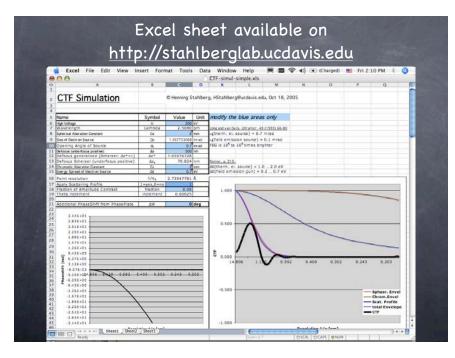
CTF

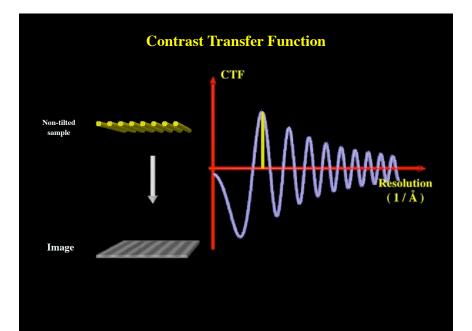
 $CTF(u) = \{ A * cos(\gamma(u)) - sqrt(1-A^2) * sin(\gamma(u)) \} * E(u) \}$

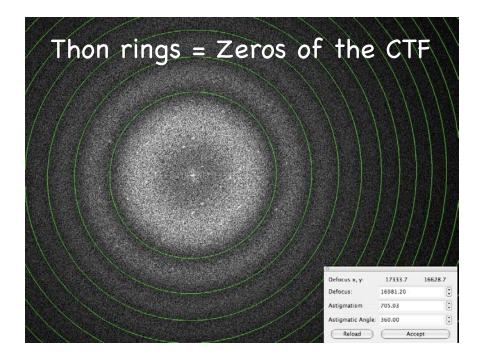
$$\gamma(\mathbf{u}) = \frac{2\pi W}{\lambda} = \frac{\pi}{2} \left[C_{\rm s} \lambda^3 \mathbf{u}^4 - 2\Delta z \lambda \mathbf{u}^2 \right]$$

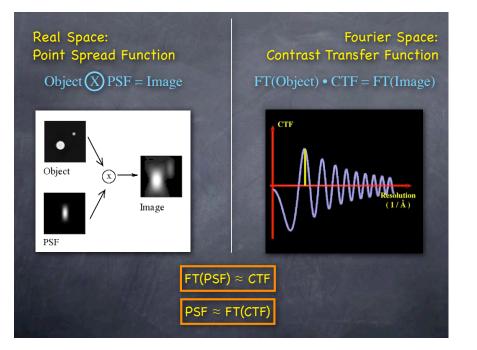

 $sin(\gamma(u))$: phase contrast transfer function $COS(\gamma(u))$: amplitude contrast transfer function

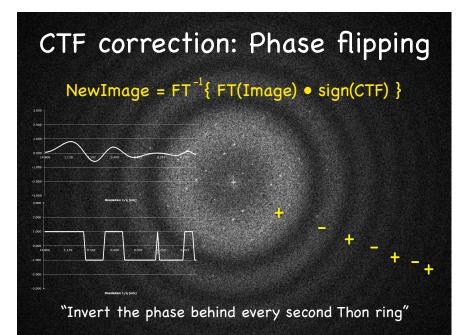

u: scattering vector (≈scattering angle)

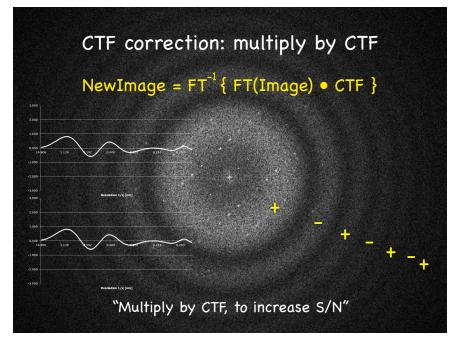

A: Amplitude contrast fraction. (neg. stain: use 0.07)

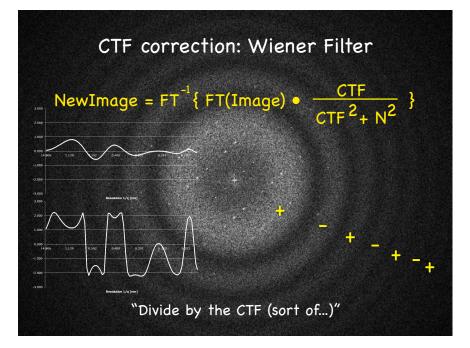

Envelope functions $f(u) = f_s(u) \cdot f_c(u) \cdot f_d(u) \cdot f_v(u) \cdot f_D(u)$ with $f_s(u) : \text{ angular spread of the source} \qquad \alpha = \text{opening angle}$ $f_s(u) = exp[-(\frac{\pi\alpha}{\lambda})^2(\frac{\delta X(u)}{\delta u})^2] = exp[-(\frac{\pi\alpha}{\lambda})^2(\mathcal{C}_s\lambda^3u^3 + \Delta f\lambda u)^2]$ $f_c(u) : \text{ chromatic aberration}$ $f_c(u) : \text{ chromatic aberration}$ $f_c(u) : \text{ specimen drift}$ $f_v(u) : \text{ specimen drift}$ $f_v(u) : \text{ specimen vibration}$ $f_D(u) = MTF_D(u) : \text{ detector}$

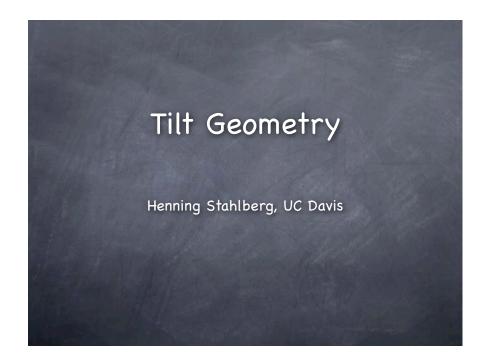

Modulation Transfer Function (MTF) of photographic film

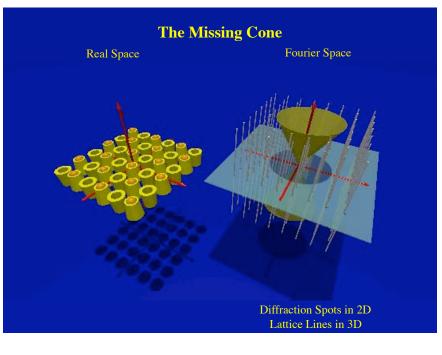












Conclusions CTF

- The <u>CTF</u> defines the transfer of contrast from the sample onto the image.
- The <u>PSF</u> defines the impact on the image from a point in the sample. PSF = FFT(CTF).
- CTF needs to be fitted and <u>corrected</u>.
- CTF for <u>tilted samples</u> is a complicated and important story, which will be told by Ansgar Philippsen after the coffee break.

Coordinate System of the Record		- ⁻	
. Where is the tilt axis?	TLTAXIS: angle from		, **,
. How much tilt was there?	TLTANG: tilt angle o		
3. How is the crystal oriented	1? TLTAXA: angle from	lt-axis to A*	
Coordinate System of the Sample			
. How much tilt was there?	- TANGL: tilt angle of	mple	
		ANG, but Sign dependent on:	
	Is A* abov	It axis? Sign of TLTAXA? Handedness of the lattice assignment?)	
5. How is the crystal oriented	I? TAXA: angle from til	axis to A* on sample_	
		n TLTAXA!)	
Four ways to determine/refine ti	ilt geometry:	Defocus values in 49 positions on image	
Four ways to determine/refine ti From defocus of negative	<u>ilt geometry:</u> (ctfsearch3)	Defocus values in 49 positions on image 12780 11990 10960 9900 9510 8430 12610 10920 10800 9480 9330 8070	 7500 7090
	(ctfsearch3)	12780 11990 10960 9900 9510 8430 12610 10920 10800 9480 9330 8070 11770 11230 10190 8890 8460 7390	7500 7090 6890
From defocus of negativeFrom lattice distortion	(ctfsearch3) (lattilt)	12780 11990 10960 9900 9510 8430 12610 10920 10800 9480 9330 8070 11770 11230 10190 8890 8460 7390 11400 10190 9488 8655.35 7770 6790	7500 7090 6890 6590
 From defocus of negative From lattice distortion From spot-splitting 	(ctfsearch3) (lattilt) (ttrefine)	12780 11990 10960 9900 9910 8430 12610 10920 10800 9480 9330 8070 11770 11230 10190 8890 8440 7390 11400 10190 9480 8565.35 7770 6790 11090 9630 9360 8560 7570 6730	7500 7090 6890 6590 5930
From defocus of negativeFrom lattice distortion	(ctfsearch3) (lattilt) (ttrefine)	12780 11990 10960 9900 9510 8430 12610 10920 10800 9480 9330 8070 11770 11230 10190 8890 8460 7390 11400 10190 9488 8655.35 7770 6790	7500 7090 6890 6590
 From defocus of negative From lattice distortion From spot-splitting 	(ctfsearch3) (lattilt) (ttrefine)	12780 11990 10960 9900 9510 8430 12610 10920 10800 9480 9330 8070 11770 11230 10190 8890 8460 7390 11400 10190 9480 8665.35 7770 6790 1090 9630 9360 8590 7570 6730 10990 9540 9260 7850 7240 6060	7500 7090 6890 6590 5930 5670
 From defocus of negative From lattice distortion From spot-splitting 	(ctfsearch3) (lattilt) (ttrefine)	12780 11990 10960 9900 9510 8430 12610 10920 10800 9480 9330 8070 11770 11230 10190 8890 8460 7390 11400 10190 9480 8665.35 7770 6790 1090 9630 9360 8590 7570 6730 10990 9540 9260 7850 7240 6060	7500 7090 6890 6590 5930 5670

TANGL = 45.3900 TAXA = -86.8216

45.38935 45.3894 -86.82402 -86.8236 46.998 -93.714

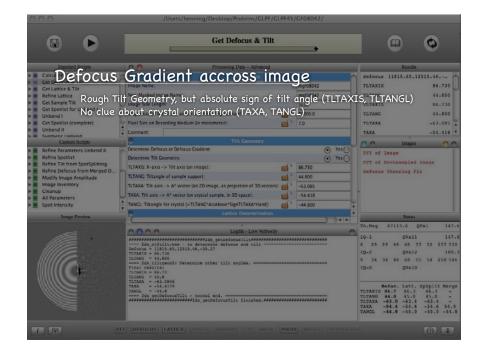
Determination and Refinement of the Tilt Geometry in 2dx

Determination and Refinement of the Tilt Geometry in 2dx

Defocus Gradient accross image

Rough Tilt Geometry, but absolute sign of tilt angle (TLTAXIS, TLTANGL) No clue about crystal orientation (TAXA, TANGL)

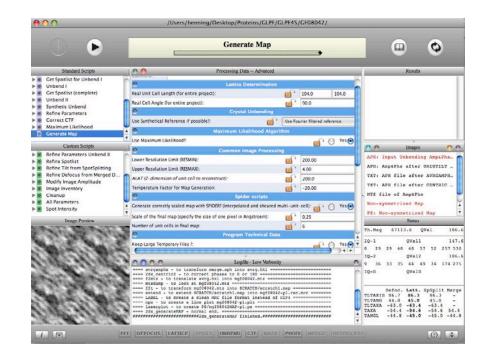
Lattice Distortion

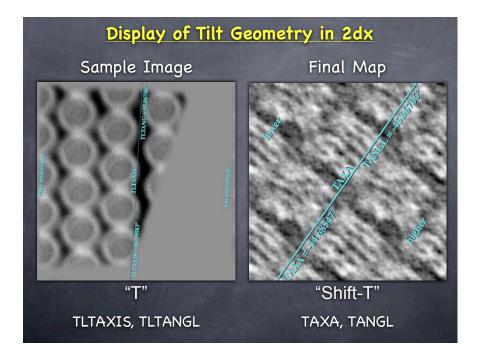

Precise Tilt Geometry if tilt larger than 25^o, but no clue about sign of tilt angle (sign taken from above)

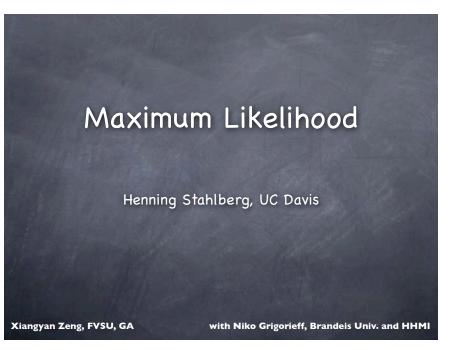
SpotSplitting

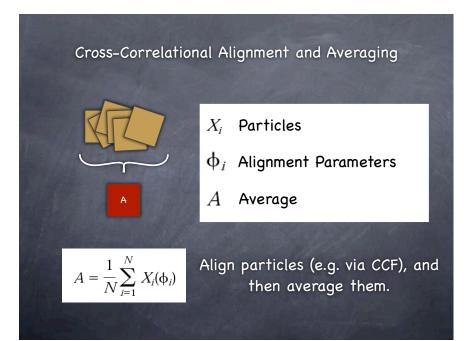
Precise Tilt Geometry if tilt larger than 25[°], but no clue about sign of tilt angle (sign taken from above)

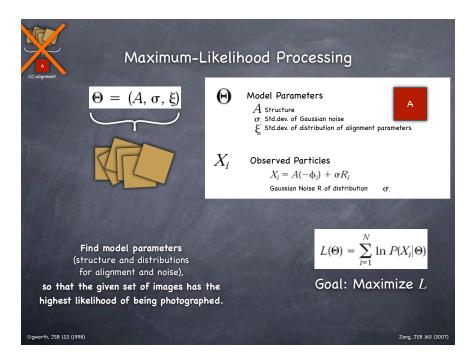
3D Merging

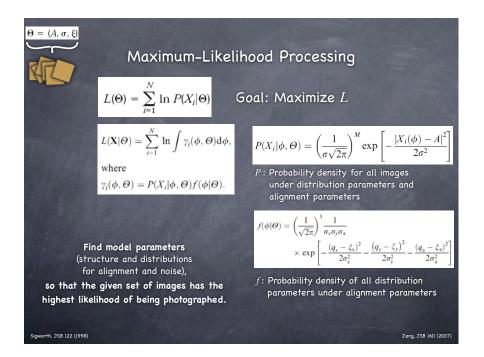

Precise Tilt Geometry for sample (TAXA, TANGL), but no clue about carbon film orientation (TLTAXIS, TLTANGL)

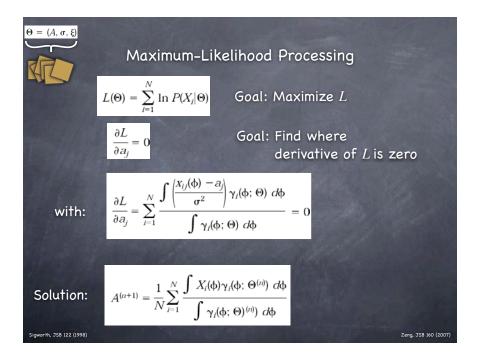


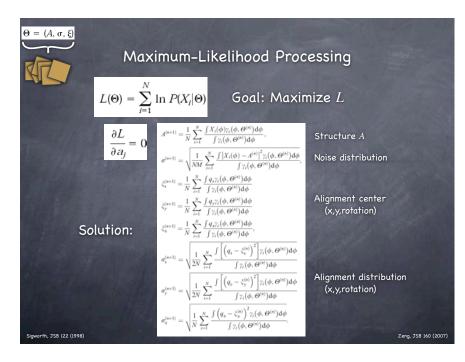


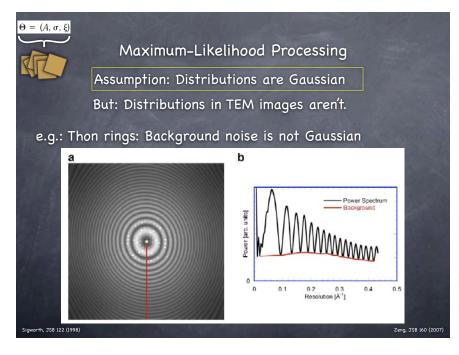

			Refine Tilt from SpotSplitting				0
Standard S	icnpts	100					Results
 Initialization Calculate FFT Cet Defocus & T Get Lattice & "life Get Lattice & "life Get Sample Tit Cet Spotlist for L Get Spotlist for L Get Spotlist for L Get Spotlist for L Custom 5 Refine Paramete Refine Paramete Refine Defocus 1 Refine Defocus 1 Modify Image A Image - metry 	: inplete) cripts rs Unbend II SpotSplitting from Merged D nplitude	TAXA: Tilt axis -> A* ve	Image File Tile Geomery txis (on image): mple support: exerc (on 20 mage, as projection of 3D vector color (on crystal sample, in 3D space):		Res Elbasis 10 (none) (0.19958) 45.06706 (-2).41927 -31.68547	TTREFINE_TLTAXIS TTREFINE_TLTAXIS TTREFINE_TLTAXA TTREFINE_TAXA TTREFINE_TAXA TTREFINE_TAXA TTREFINE_TAXA	
		Tilt Geometry	<pre>ital - TITAK "AirAkses" Supprit TAAT Houd Earth Department and the infortilt larger than 2 n of tilt angle (sign t Logite - Low Authors """"""""""""""""""""""""""""""""""""</pre>	aker	from above)	Sum Th.Mag 67113.6 IQ-1 QVa 9 31 18 30 47	QVal 1 11 1
		<pre>mean old defocus =</pre>	NN - 1.9 41215 VALUE,			IQ-S OVA	55 54 258 10 t. SpSplit Me 3 86.3 0 45.0 .4 -63.4 .6 -54.6 5

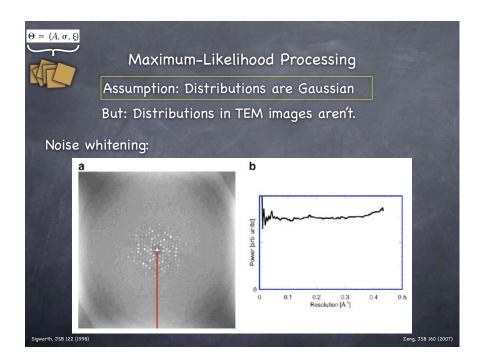

80 0	4	-	-	_	N.	-	-
	Initialization →						0
Standard Scripts		1	Users/henning/Des	ktop/Proteins/GLP	T/merge/		0000
Initialization	Merge Directory	PhaRes	TAXA	TANGL	PhaOri	PhaOri Change	rHK
Merge Once	V GLPF30						
Refine Once Merge & Refine (Iterative) 2	CF06653_30	6 39.92	5 33.48	iii 29.90	i 103.9,101.4	-1.20,0.00	6
Generate Image Maps	CF06653_30b	6 43.22	51.21	-30.26	64.4,-158.5	1.20,-1.80	6
Final Merge	CF06666_30	6 52.87	6 -80,41	· 30.79	· -72.5,-82.5	0.30,-0.30	ര്
Generate Merged Map	GF06667_30	6 41.89	17.60	· -31.06	≦ ¹ 146.2,5.2	-1.80,-4.50	6
(Re-)Process all images	GF06670_30	a [*] 36,41	💕 38.23	28.56	a 26.6,52.3	0.90,1.20	ല്
	GF06675_30	6 40.66	60.65	· -30.16		3.30,1.50	5
Custom Scripts	CF06685_30	un' 33,41	67.07	· 30.44	m 37.1,-179.2	1.80,0.30	10
and the second	GF06685_30b	6 41.94	-82.07	a 30.70	-40.8,10.1	0.00,-0.60	6
F Maximum Likelihood	GF06687_30	a 48.34	m ⁻ 53.32	· 30.93	· -103.7,122.5	9.00,6.60	5
Modify Image Parameter Copy Merged Dataset	GF06687_30b	51.04	a* 23.60	m [*] -31.32	······································	-9.60,-14.10	తి
Generate Map from Saved Data	CF06688_30	6 39.27	55.84	5 32.50	67.6,72.7	0.60,-0.60	తి
Display Maps	CF06688_30b	6 42.49	29.05	-32.19	-33.2,123.3	4.50,6.90	5
Refresh Databases	CF06690_30	(a) 30.86	57.12	31.95	a 41.2,175.6	-0.30,-0.60	5
Eustom Script 1	CF06690_30b	a 33.73	a 31.29	-32.03	-81.5,175.1	-1.20,-3.30	5
F Custom Script 2	GF06693_30b	S* 38.08	S 30.94	-30.35	\$ 31.8,-104.2	-1.20,1.80	5
Eustom Script 3	GF06694_30b	6 49.34	6 38.57	a 31.19	S 12.1,16.8	-1.20,-0.30	5
Image Preview	T GLPF45						_
THE PARTY OF A PARTY OF	CF08005	45.10	6.60	46.97	■ 10.4,-27.6	1.20,-12.30	10
	CF08013	45.16	45.94	46.09	-175.1,-88.8	-6.00,-11.40	5
	GF08025	41.07	61.87	-44,26	-171.8,37.0	7.20,3.30	
2D Man		47.00	86.16	e 45.45	-73.040.9	6.00,0.60	5
<u>3D Merg</u>	CF08032b	57.63	86.15	-44.95	-107.281.3	11.70.0.90	5
	CF08034				-42.5.132.9	6.60.1.80	5
Precise Ti	It Geometry for	sample (T	ΈΑΧΑ, ΤΑ	tNGL), 47	69.5,-103.3	8.10.10.80	5
						3.00.4.20	5
but no ciu	ue about carbon	nim orien	Tation (1	LIAXIS,	TLTANGL)	3.90,6.00	5
Contraction of the second second	T GLPF60			-			-
10 10 - 10 10 - 10 10 - 10 - 10 - 10 -	CF08096a	26.83	a 35.38	-59.39	\$2.0,-8.1	-2.40.0.00	5 ×
allo the sallo the s	GF08096a-all	· 27.23	- 35.38	-59.39	84.48.2	2,40,0.00	
	C	-					2412
				1			
-							-
						6	TAXABLE INCOME.

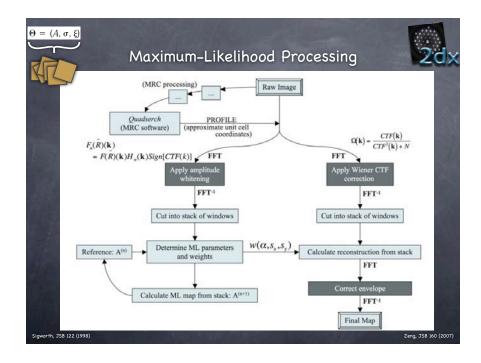


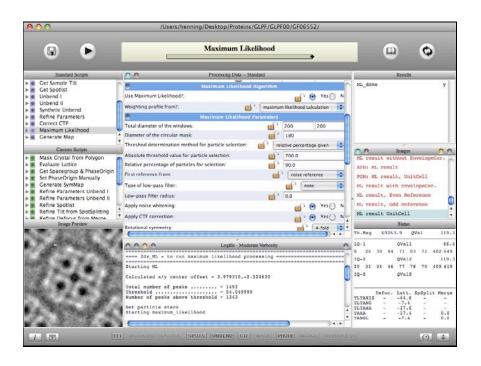


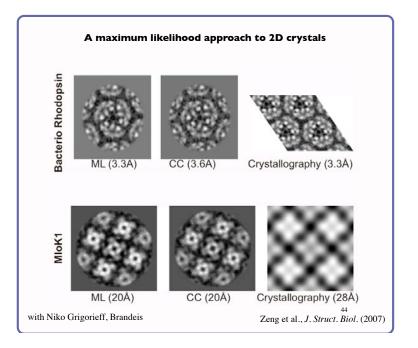


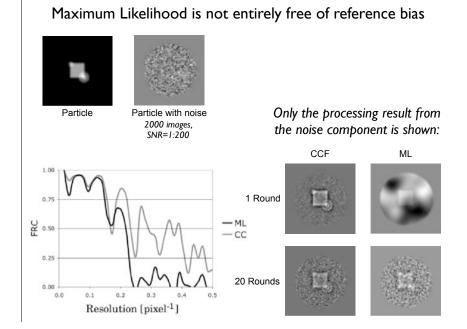


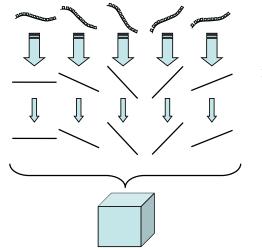






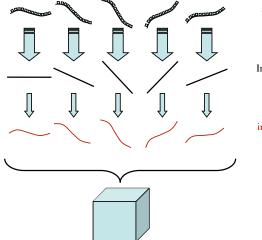






Badly prepared crystals are not flat.Electron BeamImageImageImageEven spacingImageUneven spacing under tilt

Badly prepared crystals are not flat. This leads to resolution loss.

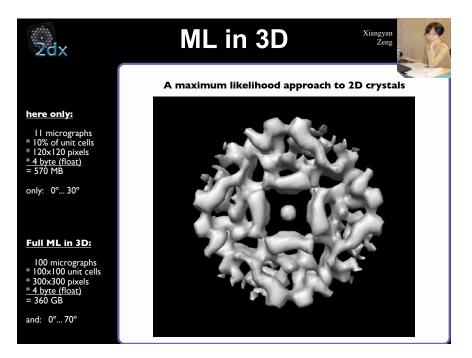

samples at various tilts

Images of samples at various tilts

<u>Two</u>-dimensional image processing results, for various tilts

3D reconstruction

Badly prepared crystals are not flat. This should not lead to resolution loss.


samples at various tilts

Images of samples at various tilts

Three-dimensional interpretation of these images

3D reconstruction

