





# Projective Constraint Optimization: Filling the missing cone

C-CINA: Center for Cellular Imaging and Nano Analytics

Henning Stahlberg



# **Filling the Missing Cone**



Bryant Gipson

John Spence, U. Arizona, TX Kaoru Mitsuoka, Tokyo Dan Masiel, UC Davis Mike Sarahan, UC Davis Nigel Browning, UC Davis Wanda Kukulski, EMBL





# **Electron Crystallography Bottlenecks**



Samples: "PHS" (Pure, Homogeneous, Stable). "Is a gel filtration profile still perfect after 1 week at 4°C?"

2D Crystallization

2D crystals: Automation.

Images:

E-diff:



Grid preparation: New sample supports (TiSi? Graphene?).

Automation? Phase contrast STEM?

Automated electron diffraction in TEM.



Image Processing



MRC, 2dx, IPLT: Throughput, User-friendliness, Automation, Maximum Likelihood for badly ordered 2D crystals.

Missing Cone: PCO (Projective Constraint Optimization)

#### Missing Cone: PCO (Projective Constraint Optimization)

#### Hybrid Input Output Algorithm Iterative Fienup-Gerchberg-Saxton – Algorithm

| Opt. Lett. 3, 27-29 (1978)           | Reconstruction of an object from the modulus of its Fourier transformation<br>J. R. Fienup                                                                                           |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Biophys. J. 25, 495-512 (1979)       | Structure determination of asymmetric membrane profiles<br>using an iterative Fourier method<br>R.M. Stroud, D. A. Agard                                                             |
| Biophys. J. 37, 589-602 (1982)       | Linking regions between helices in Bacteriorhodopsin revealed<br>D. A. Agard , R.M. Stroud                                                                                           |
| Ultramicroscopy 31, 365-378 (1989)   | Approximation of missing-cone data in 3D electron<br>microscopy<br>M. Barth, R.K. Bryan, R. Hegerl                                                                                   |
| J. Struct. Biol. 144, 209-218 (2003) | Three-dimensional diffractive imaging for crystalline<br>monolayers with one-dimensional compact support<br>J.C.H. Spence, U. Weierstall, T.T. Fricke, R.M. Glaeser,<br>K.H. Downing |





multiplication with G

convolution with g



# **Real Space**









### Inversion of Matrix F by Singular Value Decomposition

$$\mathcal{F}_{z,z^*} \ x_z = \hat{x}_{z^*}$$

Truncated Singular Value Decomposition: Matrix *F* is represented by a quasi-diagonal matrix *S*, surrounded by  $V^T$  and *U*.

$$\mathcal{F}_{z,z^*} = U \cdot S \cdot V^T$$

Inversion is by transposition of  $V^T$ , U, and inversion of S.

$$\mathcal{F}_{z,z^*}^+ = V \cdot S^+ \cdot U^T$$



*F* is a least squares solution with lowest energy. It is not a unique solution.







# **Real Space**

# Fourier Space

Apply Boundary Conditions

Real Space Constraints: •Real Valued •Non-negative densities •Symmetric

•Membrane Slab Bounded

# Real Space Constraints at later stages:

Mostly Contiguous Density: Shrink-Wrap
Protein surface well defined: Edge Detection, Noise Suppression



Enforce

**Constraints** 

Fourier Constraints in missing cone: •Known resolution range •Scattering Profile

# Enforce Knowns

Fourier Constraints outside missing cone: •Known Amplitudes •Known Phases

Use individual weights for all constraints
Apply constraints only in fractions



## Particle Swarm Optimization

- Start with ZEROs in missing cone
- •Get model for missing cone (= position)
- •Refine model, using swarm optimization:



- (new position) = (old position) +  $a^*$ (random)
  - + a (random
    - + b\*(personal best old position)
    - + c\*(global best old position)

with a,b,c being variable parameters relative to the amount of exploration, memory and collaboration the solutions should have

http://www.youtube.com/watch?v=b1zkbVRaguo



## Bacteriorhodopsin (data from Kaoru Mitsuoka / Yoshinori Fujiyoshi)





MRC EM Density Kimura et al, 1997 (3.0 Å, electron crystallography) IBRR Essen et al 1998 (2.8 Å, XRD with lipids)

## Projective Constraint Optimization

Bacteriorhodopsin (data from Mitsuoka / Fujiyoshi)



PCO: 100 Initial Rounds, followed by 30 rounds Edge Detection

#### Real Space Constraints:

- Real Valued
- •Non-negative densities
- •Symmetric
- Membrane Bounded
- •Shrink Wrap
- •Edge Detection, Noise Suppression

#### Fourier Constraints:

•Known Amplitudes •Known Phases •Known resolution range •Scattering Profile

## **Projective Constraint Optimization**

Bacteriorhodopsin (data from Mitsuoka / Fujiyoshi)

Schiffbase region



PCO: 100 Initial Rounds, followed by 30 rounds Edge Detection

## Projective Constraint Optimization

Bacteriorhodopsin (data from Mitsuoka / Fujiyoshi)

Lipid region



PCO: 100 Initial Rounds, followed by 30 rounds Edge Detection

Real Space Constraints: •Real Valued •Non-negative densities

- Symmetric
- Membrane Bounded
- •Shrink Wrap
- •Edge Detection, Noise Suppression

Fourier Constraints:

- Known Amplitudes
- •Known Phases
- •Known resolution range
- •Scattering Profile





#### Real Space Constraints: •Real Valued

- Non-negative densities
- Symmetric
- •Membrane Bounded
- •Shrink Wrap
- •Edge Detection, Noise
- Suppression

#### Fourier Constraints:

•Known Amplitudes •Known Phases •Known resolution range •Scattering Profile





# Structural Comparison

PCO Refined Data



Kimura et al, 1997







# PCO will become available within 2dx 2.

<u>orc</u>

2dx





# **Electron Crystallography Bottlenecks**



Samples: "PHS" (Pure, Homogeneous, Stable). "Is a gel filtration profile still perfect after 1 week at 4°C?"



2D crystals: Automation.



Grid preparation: New sample supports (TiSi? Graphene?).



Model Building

Images: Automation? Phase contrast STEM?

E-diff: Automated electron diffraction in TEM.



Missing Cone: PCO (Projective Constraint Optimization)