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Abstract

The phase retrieval problem is of paramount importance in various areas of applied physics
and engineering. The state of the art for solving this problem in two dimensions relies heav-
ily on the pioneering work of Gerchberg, Saxton, and Fienup. Despite the widespread use of
the algorithms proposed by these three researchers, current mathematical theory cannot ex-
plain their remarkable success. Nevertheless, great insight can be gained into the behavior, the
shortcomings, and the performance of these algorithms from their possible counterparts in con-
vex optimization theory. An important step in this direction was made two decades ago when
the error reduction algorithm was identified as a nonconvex alternating projection algorithm.
The purpose of this paper is to formulate the phase retrieval problem with mathematical care
and to establish new connections between well established numerical phase retrieval schemes
and classical convex optimization methods. Specifically, it is shown that Fienup’s basic input-
output algorithm corresponds to Dykstra’s algorithm, and that Fienup’s hybrid input-output
algorithm can be viewed as an instance of the Douglas-Rachford algorithm. This work provides
a theoretical framework to better understand and, potentially, improve existing phase recovery
algorithms.
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1 Introduction

The phase retrieval problem consists of estimating the phase of a complex-valued function from
measurements of its modulus and additional a priori information. It is of fundamental importance
in numerous areas of applied physics and engineering1–8 and has been studied for over forty years
(see9–11 and the references therein). Historically, the roots of the problem can be traced back to
1892: in a letter to A. Michelson, Lord Rayleigh stated that the continuous phase retrieval problem
in interferometry was in general impossible to solve without a priori information on the symmetry
of the data.12

As in many inverse problems, a common formulation of the phase retrieval problem is to seek as a
solution any function that is consistent with the measurements as well as with a priori constraints.
The Gerchberg-Saxton algorithm13 and its descendent in the form of the error reduction algorithm14

was the first widely used numerical scheme to solve this type of problem. While its intrinsic
mechanism is clear physically — it consists of alternating back-substitutions of known information
in the spatial and Fourier domains — it was not initially understood mathematically. In particular,
failure of convergence and stagnation of the iterates away from solution points were observed from
the outset but lacked a sound mathematical explanation. In the early 1980s, with the work of
Youla15 and others,16–18 the application of Bregman’s method of successive projections19 to the
recovery a signal described by convex constraints generated considerable interest in the signal
recovery community; see20–23 and the extensive lists of references therein. It was natural to seek
to embed other iterative methods in this powerful projection framework. Thus, the informal use of
cyclic projections in the presence of nonconvex sets appears in several places in the literature.24–27

In,28 the error reduction algorithm (loosely called the Gerchberg-Saxton algorithm there) was
revealed as such an algorithm, featuring a nonconvex magnitude constraint in the underlying signal
space. This study (see also the follow-up paper29) gave insightful geometrical interpretations of
the stagnation problem as well as of other aspects of the error reduction iterative procedure. A
local convergence statement for the general nonconvex projection method was then proposed in30

and followed in32 by a more formal analysis based on the theory of multi-valued projections (see
also33 for a tutorial review of these two papers, and34 for further developments). Another approach
to the convergence question was proposed in35,36 based on the projection theory for convex sets.
To extend this theory to the nonconvex setting, the authors require the projection operators to
be single-valued.37 Unfortunately, there is no known example of a nonconvex set for which the
projection operator is single-valued (see Remark 3.10). Indeed, the projections in the phase retrieval
problem are inherently multi-valued: in39 the projection operator is precisely identified with the
multi-valued subdifferential of a related nonsmooth error metric. A smooth approximation to the
projection operator is presented in40 together with results on the local convergence of iterative
methods for minimizing a corresponding smooth error metric.

In a series of papers41–43 which were unified and reviewed in his seminal 1982 paper,14 Fienup
introduced a broad framework for iterative algorithms. Three main classes of algorithms were pre-
sented: error reduction, Basic Input-Output (BIO), and Hybrid Input-Output (HIO). Of the three
classes, the last is the most widely used by practitioners. This work resulted in new applications
in a wide range of imaging modalities. Furthermore, the error reduction and Fienup algorithms
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continue to constitute the central conceptual framework for phase retrieval algorithms.

While well-known in the field, the BIO and HIO algorithms lack a proper mathematical frame-
work. The aim of this paper is to show that, just like the error reduction algorithm, the BIO and
HIO algorithms also have powerful counterparts in the world of convex projection methods. Our
discussion is somewhat more formal than what is usually found in the optics literature, as the level
of sophistication of the algorithms requires great attention to details. As much as possible, we
provide an intuitive and non-technical discussion without sacrificing the mathematical rigor and
precision necessary for a meaningful and constructive analysis of Fienup’s algorithms. All technical
proofs have been relegated to an appendix.

The paper is organized as follows. In Section 2, the phase retrieval problem is posed as a feasi-
bility problem. Section 3 supplies the necessary review of projection theory, convex analysis, and
fixed point theory. The classical algorithms for solving the phase retrieval problem are presented
in Section 4. Section 5 describes the correspondence between these algorithms and classical algo-
rithms for solving the convex optimization problems: error reduction and alternating projections
(Section 5.2); Fienup’s BIO and Dykstra’s algorithm (Section 5.3); Fienup’s HIO and Douglas-
Rachford (Section 5.4). Concluding remarks are formulated in Section 6.

2 Phase retrieval and feasibility

In its general form, the signal recovery problem is to estimate the original form of a signal x in
a functional space L from the measurements of physically related signals and a priori informa-
tion.21,22 In phase retrieval problems, the measurements consist of the modulus m of the Fourier
transform x̂ of x. In other words, the imaging model is described by the relationship

|x̂| = m, (1)

and x is commonly referred to as the object or input of the imaging model. For instance, in optical
interferometry astronomy, x is the scattering amplitude of some medium. The measurement, m,
is a nonnegative function which is proportional to the modulus of the spatial coherence function
(Section 7.4 in44), that is, m is proportional to the modulus of the Fourier transform of the scattering
amplitude.

A general signal space that appropriately models the underlying physics is the complex Hilbert
space

L = L2[RN , C]. (2)

Hence, a signal x in L is a square-integrable function mapping a continuous variable t ∈ RN to a
complex number x(t) ∈ C. The set of signals that satisfy the Fourier domain constraint (1) is45

M =
{
y ∈ L : |ŷ| = m a.e.

}
. (3)

In addition to the imaging model, an important piece of information that is typically available
in phase retrieval problems is that the support of x is contained in some set D ⊂ RN . If we let

3



1E denote the characteristic function of a set E ⊂ RN and !E its complement, this object domain
constraint confines x to the set

S =
{
y ∈ L : y · 1!D = 0

}
. (4)

The phase retrieval problem can be posed as that of finding a function x ∈ L that satisfies these
two constraints, namely,

find some x ∈ S ∩ M. (5)

This formulation exhibits the phase retrieval problem as a problem of finding a point in the inter-
section of constraint sets, i.e., a set theoretic estimation problem in the sense of.20 In mathematics
(especially in optimization) problems of this kind are called feasibility problems. In this paper
we shall restrict our attention to the case when (5) is consistent, i.e., S ∩ M $= ∅. It should be
noted, however, that occurrences of inconsistent set theoretic formulations in phase retrieval or
other signal recovery problems are far from being academic due to noisy data, measurement errors,
or inaccurate a priori information.21,47–50 Several investigations have been devoted to analyzing
and coping with this situation in convex problems.51–56

While the infinite-dimensional space L appears to be the most appropriate signal space to model
the physics of the problem and to describe the subtle properties of the algorithms in their full
generality, we shall also call attention to finite-dimensional versions of the results whenever these
happen to differ from their infinite-dimensional counterparts. The reason for this is that in most
numerical applications, the signals are sampled on a finite grid and the algorithms are implemented
on a digital computer.57 In this context, the underlying Hilbert space is a Euclidean space whose
dimension is determined by the number of samples.

3 Fundamentals of numerical theory

Before discussing the most common and successful algorithms for solving the phase retrieval prob-
lem, we establish the mathematical definitions, properties, and results that constitute the theoret-
ical foundation of projection algorithms. We begin with a few basic definitions.

3.1 Distances, projections, and projectors

3.1.1 Distances

As we shall deal with different Hilbert spaces, we assume in this section that

H is a general Hilbert space, with inner product 〈·, ·〉 and norm ‖ · ‖ : x )→
√

〈x, x〉.

For instance, if H = L, then 〈x, y〉 =
∫

xy, for x, y ∈ H. Or 〈x, y〉 = xT y in RN . The quantity
‖x‖2 is simply the energy of a signal x ∈ H.
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Definition 3.1 (distances) Suppose x ∈ H.

(i) If y is a point in H, then the distance from x to y is d(x, y) = ‖x − y‖.

(ii) If Y is a set in H, then the distance from x to Y is d(x, Y ) = infy∈Y d(x, y).59

As we show in the following example, the distance from a point to a set may not be attained.

Example 3.2 Let H = R2 be the Euclidean plane.

(i) If x = (2, 0) and Y = {y ∈ H : ‖y‖ ≤ 1} is the unit ball, then d(x, Y ) = 1 and the distance
is attained at y = (1, 0) ∈ Y : d(x, Y ) = d(x, y). Moreover, y is the only point in Y with this
property — every other point in Y is further away from x than y is.

(ii) If x = (2, 0) and Y = {y ∈ H : ‖y‖ < 1} is the open unit ball, then still d(x, Y ) = 1 yet there
is no point y ∈ Y with d(x, y) = d(x, Y ); the distance from x to Y is not attained.

(iii) If x = (0, 0) and Y = {y ∈ H : ‖y‖ = 1} is the unit circle, then d(x, Y ) = 1 = d(x, y), for all
y ∈ Y ; the distance is attained at every point in Y .

The points at which the distance to a set is attained are of great importance and the subject of
the following subsection.

3.1.2 Projection operators (projectors)

Definition 3.3 (projection operator) Suppose Y is a set in H. If x ∈ H, then the set of points
in Y nearest to x, namely {

y ∈ Y : d(x, y) = d(x, Y )
}
, (6)

is denoted ΠY (x), and called the projection of x onto Y . The induced operator ΠY is called the
projection operator or projector onto Y .

An interpretation from signal processing helps at this point: if Y contains the signals satisfying
a certain property, then the signals in ΠY (x) are the closest signals to x satisfying this property.
It is crucial to realize that the output of a projector ΠY are subsets of Y . These may be empty,
reduced to a single element, or have more than one element: revisiting Example 3.2 and borrowing
its notation, we see that (i) ΠY (x) = {(1, 0)}, (ii) ΠY (x) = ∅, (iii) ΠY (x) = Y , respectively. To
bring out this behavior clearly, we say that the projector is a multifunction or a multi-valued map.60

Remark 3.4 (single-valued selections of projectors) Let ΠY be the projector onto a prox-
iminal set Y , i.e., ΠY (x) $= ∅ for all x ∈ H. Then we shall denote by PY a selection of ΠY , i.e.,
PY (x) ∈ ΠY (x), for all x ∈ H. PY is therefore a single-valued operator. When Y is a Chebyshev
set, i.e., ΠY (x) is a singleton for all x ∈ H, then ΠY has a unique selection PY , which is itself called
the projector onto Y . This always occurs when the set Y is closed and convex, see Fact 3.9 below.
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3.1.3 A preview: Projections for the phase retrieval problem

In the setting of the phase retrieval problem, the abstract Hilbert space H is simply the function
space L introduced in Section 2. The most common approach for solving the phase retrieval problem
is to enforce the known object domain and Fourier domain constraints in some alternating fashion.
Thus, given a signal x, the support constraint is naturally enforced by setting x equal to zero
outside the given domain D, via the transformation x )→ x · 1D. As we shall now see, this simple
operation is actually a projection.

Example 3.5 (support constraint) Suppose D is a measurable61 set in RN and fix x ∈ L. Then
the projection (recall the notation of Remark 3.4) of x onto the set S of (4) is

PS(x) = x · 1D. (7)

The same observation is true for the image modulus constraint. Approaches to enforce it are
described below; again, these operations turn out to be projections.

Example 3.6 (image modulus constraint) Let m be a nonnegative function in L and fix x ∈ L.
Then y ∈ L belongs to the projection ΠM (x) of x onto the set M of (3) if and only if it satisfies
a.e.

ŷ(ω) =

{
m(ω) bx(ω)

|bx(ω)| , if x̂(ω) $= 0;

m(ω) exp[iϕ(ω)], otherwise,
(8)

for some measurable function ϕ : RN → R .

Example 3.6 shows that every function y ∈ ΠM (x) satisfies

d
(
x̂(ω),m(ω)S

)
= d

(
x̂(ω), ŷ(ω)

)
a.e. on RN , (9)

where m(ω)S = {u ∈ C : |u| = m(ω)} denotes a circle in the complex plane, with radius m(ω) and
centered at the origin. The multi-valuedness of the projection is now evident: whenever x̂(ω) = 0,
any phase ϕ will work. Consequently, if the set {ω ∈ RN : m(ω) $= 0 and x̂(ω) = 0} is sufficiently
large,62 then ΠM (x) contains infinitely many elements (see40 and Example 3.15 below).

In practice, one picks the particular selection y0 ∈ ΠM (x) corresponding to zero phase ϕ ≡ 0:

ŷ0 (ω) =

{
m(ω) bx(ω)

|bx(ω)| , if x̂(ω) $= 0;

m(ω), otherwise.
(10)

Analogous formulae hold if one considers a modulus constraint in the object domain (as in the
original set-up of the Gerchberg-Saxton algorithm for reconstructing phase from two intensity
measurements; see13).

6



3.2 Convexity and closedness

In what follows we assume that63

H is a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. (11)

Definition 3.7 (vector subspace and convex set) Suppose C is a nonempty set in H. Then
C is a

(i) vector subspace if it contains the zero vector and if the line joining any two points in C lies
entirely in C (algebraically: λc1 + (1 − λ)c2 ∈ C whenever c1, c2 ∈ C and λ ∈ R);

(ii) convex set if the line segment joining any two points in C lies entirely in C (algebraically:
λc1 + (1 − λ)c2 ∈ C whenever c1, c2 ∈ C and λ ∈ [0, 1]).

Definition 3.8 (closed set) Suppose C is a set in H. Then C is closed if, whenever (cn) is a
sequence in C that converges to some point c ∈ H, the limit point c belongs necessarily to C.

Closedness is important for algorithmic purposes: one often wants the limit of a sequence to
inherit good properties from the terms of the sequence. Closedness is certainly a necessary condition
for the existence of projections. Indeed, a point x in the closure (smallest closed superset) of C
but not in C has no projection onto C. In finite-dimensional spaces, closedness is also sufficient to
guarantee the existence of projections, e.g.32 ; however, this is no longer true in infinite-dimensional
spaces (see Example III.4.3.2.b in64 for a counterexample).

In tandem with convexity, closedness guarantees that projections are extremely well-behaved.

Fact 3.9 (projection onto a closed convex set) Suppose C is a nonempty closed convex set
in H. Then for every x ∈ H, the projection of x onto C is a singleton; moreover, the point65 PC(x)
is characterized by

PC(x) ∈ C, and 〈c − PC(x), x − PC(x)〉 ≤ 0, for all c ∈ C. (12)

In addition, the projector PC satisfies

‖PC(x) − PC(y)‖2 + ‖(I − PC)(x) − (I − PC)(y)‖2 ≤ ‖x − y‖2, for all x, y in H. (13)

Remark 3.10 (Chebyshev problem) Suppose C is a closed nonempty set in H. If C is convex,
then Fact 3.9 states that the projector ΠC = {PC} is a single-valued map. The converse implication
is the famous Chebyshev problem: if the projector ΠC is a single-valued map, must the set C be
convex? The answer is affirmative in finite-dimensional spaces, but remains open to date for the
general Hilbert space case. If it turns out to be affirmative in general, then the results of35,36

discussed in the Introduction are essentially void. The reader is referred to Chapter 12 in66 for
further information.
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For the remainder of this section, we use the notation of Section 2. The following result is quite
useful.

Proposition 3.11 (separable constraints and projections) Suppose (A(t))t∈RN is a family
of sets in C. Let A = {a ∈ L : a(t) ∈ A(t) a.e.}.

(i) If each A(t) is convex, then so is A.

(ii) If each A(t) is closed, then so is A.

Theorem 3.12 (projection onto a separably closed convex constraint) Let (A(t))t∈RN be
a family of closed convex sets in C such that A = {a ∈ L : a(t) ∈ A(t) a.e.} is nonempty. Assume
that t )→ A(t) is a measurable multifunction67 from RN to C. Fix x ∈ L. Then y = PA(x) is given
by y(t) = PA(t)(x(t)) a.e.

Remark 3.13 In Theorem 3.12, the condition that t )→ A(t) be measurable may be difficult to
verify in practice. For our purpose, however, it is sufficient to work with the following criterion,
taken from Section 14.A in:68

if µ is a measurable function from RN to C and Z ⊂ C,
then A(t) = µ(t) · Z defines a measurable multifunction.

Note that there is no restriction whatsoever on the set Z.

Example 3.14 (object domain constraint) Let x ∈ L. Then

(i) (support) A = {y ∈ L : y · 1!D = 0} is closed and convex, with PA(x) = x · 1D;

(ii) (real-valuedness) A = {y ∈ L : y(t) ∈ R a.e.} is closed and convex, with PA(x) = Re(x);

(iii) (nonnegativity) A = {y ∈ L : y(t) is real and nonnegative a.e.} is closed and convex (but not
a vector subspace), with69 PA(x) = (Re(x))+.

Theorem 3.12 provides a convenient expression for the projection in the infinite-dimensional
space L in terms of the finite-dimensional pointwise projections when the constraint is convex.
Unfortunately, it is well-known that the phase retrieval problem involves nonconvex constraints, as
the next example illustrates.

Example 3.15 (Fourier domain constraint is closed but not convex) For closedness, see
the proof in Appendix A. Unless m = 0 (in which case the Fourier modulus constraint encom-
passes only the zero function), the Fourier modulus constraint is never a convex set. To see this,
pick x ∈ M . Then −x ∈ M ; however, the convex combination 1

2x + 1
2(−x) = 0 does not belong to

M .
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The next theorem states that certain nonconvex constraints can also be dealt with pointwise.
This justifies the expression of the projection in Example 3.6.

Theorem 3.16 (projection onto a separably compact constraint) Let (A(t))t∈RN be a fam-
ily of compact (i.e., closed and bounded) sets in C such that A = {a ∈ L : a(t) ∈ A(t) a.e. } is
nonempty. Assume that t )→ A(t) is a measurable multifunction from RN to C. Then, for every
x ∈ L, ΠA(x) $= ∅; in fact, y ∈ ΠA(x) if and only if y is measurable and y(t) ∈ ΠA(t)

(
x(t)

)
a.e.

While the phase retrieval problem (5) is not convex, some related problems which are convex
can be found in the literature.

(i) In the problem considered by Gerchberg in,70 the object domain constraint is again x·1!D = 0
and the Fourier domain constraint is x̂ · 1Ω = f , i.e., the Fourier transform of x (not just its
modulus) on a domain Ω is a known function f . This constraint forms a convex set (actually
an affine subspace, i.e., the translation of a vector subspace). Hence, the resulting feasibility
problem is convex (affine), which explains the good convergence properties of the alternating
projection algorithm proposed by Gerchberg to solve it. This observation was made by
Youla71 in the case of the Papoulis extrapolation algorithm for band-limited signals72 (this
algorithm is identical to Gerchberg’s, except that the roles played by the object and Fourier
domains are interchanged).

(ii) In some problems, e.g., in holography, the Fourier domain constraint arises from the knowledge
of the phase ϕ of the Fourier transform of x rather than from its modulus. In,15 Youla observed
that the phase constraint ∠x̂ = ϕ leads to a convex set (actually a convex cone). This fact
was fully exploited in17 (see also29 and references therein).

(iii) In,15 Youla pointed out that the submodulus constraint |x̂| ≤ m is convex. In most phase
retrieval problems, this convexification of the exact constraint is too coarse and it will typically
produce poor results.

(iv) Convexity is an algebraic notion which, by definition, depends on the choice of the underlying
vector space structure. In,73 Çetin exhibited an alternative (discrete) signal space in which
the constraint |x̂| = m is convex. Unfortunately, this approach is not suitable for the phase
retrieval problem since the constraint x · 1!D = 0 is no longer convex in this space.

Ultimately, the difficulty of the phase retrieval problem is caused by the lack of convexity of the
Fourier domain constraint and the lack of good convex approximations to it.

3.3 Some fixed point theory

Throughout this section, we continue to make assumption (11).
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Definition 3.17 (firm nonexpansivity and nonexpansivity) Suppose T is a map from H to
H. Then T is firmly nonexpansive, if

‖T (x) − T (y)‖2 + ‖(I − T )(x) − (I − T )(y)‖2 ≤ ‖x − y‖2, for all x, y ∈ H; (14)

and T is nonexpansive, if

‖T (x) − T (y)‖ ≤ ‖x − y‖, for all x, y in H. (15)

Fact 3.9 states that the projector onto a nonempty closed convex set is firmly nonexpansive.
From the definition, it is immediate that every firmly nonexpansive map is nonexpansive. Firmly
nonexpansive and nonexpansive maps are actually very closely related.

Fact 3.18 (Theorem 12.1 in74) Suppose T is a map from H to H. Then the following are
equivalent:

(i) T is firmly nonexpansive;

(ii) 2T − I is nonexpansive;

(iii) T = 1
2 T̃ + 1

2I, for some nonexpansive map T̃ .

Many problems can be reduced to finding a fixed point of a nonexpansive mapping: the fixed
point set of a mapping T from H to H is

FixT =
{
x ∈ H : T (x) = x

}
. (16)

For example, the set of fixed points of a projector onto a closed convex set C is just FixPC = C.

Fixed points are usually found as limit points of sequences. Discussing convergence in infinite-
dimensional spaces requires care, because there exist distinct notions of convergence. The following
concepts are appropriate in our present setting.

Definition 3.19 (norm and weak convergence) Suppose (xn) is a sequence in H and x ∈ H.
Then

(i) (xn) converges (in norm, or strongly) to x, if ‖xn − x‖ → 0 (in symbols xn → x);

(ii) (xn) converges weakly to x, if 〈xn − x, y〉 → 0, for all y ∈ H (in symbols xn
w
⇀ x).

Physically, xn → x in H means that the energy of the residual signal ‖xn−x‖2 becomes arbitrarily
small as n increases; on the other hand, xn

w
⇀ x means only that any measurement of the residual

signal that can be modeled by a linear operation from H to R becomes arbitrarily small.
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It is easy to see that if a sequence converges in norm, then it does so weakly (indeed, if xn → x
and y ∈ H then, by the Cauchy-Schwarz inequality: |〈xn − x, y〉| ≤ ‖xn − x‖ · ‖y‖ → 0); in finite-
dimensional spaces, the converse is true as well. However, in every infinite-dimensional space, there
exist sequences that converge weakly but not in norm (for instance, every orthonormal sequence
converges weakly to zero, but not in norm).

We shall see in the next section that it is very desirable to have algorithms that find fixed points
of nonexpansive mappings. The strong interest in firmly nonexpansive mappings stems from the
ease of finding their fixed points by simple iteration.

Fact 3.20 (Opial75) Suppose T is a firmly nonexpansive mapping from H to H with FixT $= ∅.
Then for every x ∈ H, the sequence (T nx) converges weakly to some point in Fix T .

Remark 3.21 An ingenious example by Genel and Lindenstrauss76 shows that it is not possible
to strengthen the conclusion of Fact 3.20 to norm convergence. Also, if T is nonexpansive (but not
firmly), then (T nx) need not converge to a fixed point: consider T = −I. Then FixT = {0} and
Tnx = (−1)nx is not convergent, for any x $= 0.

4 Classical algorithms

We now discuss three popular algorithms designed for solving the phase retrieval problem (5): given
a starting point x0, each of these algorithms constructs a sequence (xn) of functions that in practice
often converges to a solution of (5). The features common to all three algorithms are these: the
construction of a function xn+1 depends only on the predecessor xn, and xn+1 is found by applying
the projection operators PS and PM in some fashion to xn. Because of this, each algorithm is
entirely characterized by its updating rule.77

We follow Fienup’s framework.14 To bring out the results as clearly as possible, we assume that
the object domain constraint is only a support constraint. In addition, for the sake of definite-
ness, PM designates the selection of the Fourier domain projector ΠM defined through (10) (see
Remark 3.4).

4.1 Error reduction algorithm

The error reduction algorithm updates a current iterate xn via31

xn+1(t) =

{(
PM (xn)

)
(t), if t ∈ D;

0, otherwise.
(17)

Hence xn+1 = 1D · PM (xn); equivalently, by Example 3.5,

xn+1 = (PSPM )(xn). (18)
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Local convergence results for this and other types of nonconvex successive projection methods can
be found in.32

4.2 Fienup’s basic input-output (BIO) algorithm

The update xn+1 in the BIO algorithm is obtained from xn by setting

xn+1(t) =

{
xn(t), if t ∈ D;

xn(t) −
(
PM (xn)

)
(t), otherwise.

(19)

Note that xn+1 = 1D · xn + 1!D ·
(
xn − PM (xn)

)
= xn − (1 − 1D) · PM (xn), which we rewrite as

xn+1 = (PSPM + I − PM )(xn). (20)

4.3 Fienup’s hybrid input-output (HIO) algorithm

Given a parameter β > 0, the HIO algorithm constructs the successor of xn via

xn+1(t) =

{(
PM (xn)

)
(t), if t ∈ D;

xn(t) − β
(
PM (xn)

)
(t), otherwise.

(21)

For clarity, we henceforth set β = 1; in practice, values of β different from 1 are important as they
may result in better performance.3,14 The recursion (21) now becomes

xn+1 = 1D · PM (xn) + 1!D · (xn − PM (xn))

= 1D · PM (xn) + (1 − 1D) · (xn − PM (xn))

= 1D ·
(
2PM (xn) − xn

)
+ xn − PM (xn)

=
(
PS(2PM − I) + (I − PM )

)
(xn). (22)

Note that this can also be written as

xn+1 =
(
PSPM + (I − PS)(I − PM )

)
(xn), (23)

because the projector onto a closed vector space is linear.

Remark 4.1 The description of the HIO algorithm in,14 specialized to our setting, actually reads79

xn+1(t) =

{(
PM (xn)

)
(t), if t ∈ D or

(
PM (xn)

)
(t) = 0;

xn(t) −
(
PM (xn)

)
(t), otherwise.

(24)

The updates differ precisely at points t that belong to !D and that satisfy
(
PM (xn)

)
(t) = 0.

However, it is not easy to determine which formulation is used in the community, as the papers
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we are aware of are not specific on this question. Notable exceptions are,80–82 which use the
formulation we shall employ,83 and,84 which uses the literal definition. We should note that the
main results of this paper would remain essentially unchanged if we followed the literal definition
(see108). Interestingly, the same issue formally arises for the error reduction algorithm and for the
BIO algorithm; however, a careful inspection reveals that this does not lead to different algorithms!

5 Main connections with convex optimization algorithms

We are now ready to establish the correspondence between classical algorithms for solving (5) and
their counterparts for solving a two-set convex feasibility problem. Throughout this section, the
standing assumption is that

A and B are two nonempty closed convex sets in a real Hilbert space H.

5.1 The convex feasibility problem

The convex feasibility problem associated with A and B is to

find some x ∈ A ∩ B. (25)

Note the similarity between (25) and the formulation (5) of the phase retrieval problem as a feasi-
bility problem. However, (5) is not a convex feasibility problem as the image modulus constraint
is not convex (Example 3.15).

We now revisit the three classical algorithms for solving the phase retrieval problem described
above. It will turn out that each algorithm corresponds to a classical algorithm for solving (25).85

5.2 Error reduction algorithm and POCS

The method of alternating projections onto convex sets (POCS) generates, for the present setting
of two constraints, sequences (an) and (bn) as follows: pick an arbitrary starting point a0 ∈ H.
Then update for n ≥ 0 via

bn = PB(an) and an+1 = PA(bn). (26)

This process is depicted in Fig. 6.

The following basic result shows that POCS does find a solution of (25).

Fact 5.1 (Brègman19) Suppose A∩B $= ∅. Then both sequences (an) and (bn) in (26) converge
weakly to a point in A ∩ B.
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Remark 5.2 Although we do not go into details, we mention in passing two possible paths
to proving Fact 5.1 The first approach is fixed point theoretic and consists of showing that (i)
Fix(PAPB) = A∩B and (ii) iterating the composition PAPB produces — analogously to Fact 3.20
— fixed points.89 The second approach is more elementary and builds on the notion of Fejér
monotonicity; see.91–93

Observation 5.3 (Error reduction algorithm as a nonconvex POCS algorithm) Replace
the set A with the (convex) object domain constraint set S and the set B with the (nonconvex)
Fourier domain constraint set M . Then the sequence (an) generated by (26) corresponds to the
sequence (xn) generated by the error reduction algorithm (18). This connection was established by
Levi and Stark28 in 1984.

5.3 Fienup’s BIO algorithm and Dykstra’s algorithm

Dykstra’s algorithm was first developed for closed convex cones in,94 and subsequently generalized
to closed convex sets in.95 For two closed convex sets A and B, it produces four sequences (an),
(bn), (pn), and (qn) as follows (see Fig. 6). Fix a starting point a0, set q−1 = 0 = p0, and update
for n ≥ 0 via

bn = PB(an + qn−1), qn = (I − PB)(an + qn−1) = an + qn−1 − bn;

an+1 = PA(bn + pn), pn+1 = (I − PA)(bn + pn) = bn + pn − an+1.
(27)

Clearly, Dykstra’s algorithm is more involved than POCS and is more demanding in terms of
storage. However, its convergence properties are superior in the sense that (i) it converges in norm
and, (ii) it provides a well-defined limit point, namely the feasible signal that lies closest to the
starting point.96

Fact 5.4 (Boyle-Dykstra95) Suppose A ∩ B $= ∅. Then both sequences (an) and (bn) in (27)
converge in norm to PA∩B(a0), the point in A ∩ B closest to a0.

Fact 5.4 is quite remarkable because the sequences converge in norm, and their limit is explic-
itly identified as the nearest feasible point to the starting point. This explains the popularity of
Dykstra’s algorithm in approximation theory, where this method is well understood and many ex-
tensions have been found; see, for instance,.98–102 For applications of Dykstra’s algorithm to signal
recovery, see.103

For the rest of this subsection, we assume additionally that A is a closed vector space. Then
(pn) lies entirely in A⊥, the orthogonal complement of A, and the computation of an+1 becomes
an+1 = PAbn + PApn = PAbn. Thus, the sequence (pn) is not needed, and Dykstra’s algorithm
simplifies to

bn = PB(an + qn−1), qn = (I − PB)(an + qn−1), an+1 = PA(bn). (28)
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Hence
an+1 + qn = (PAPB + I − PB)(an + qn−1) = (PAPB + I − PB)n+1(a0). (29)

The next observation appears to be new; it establishes the correspondence between BIO and
Dykstra’s algorithm.

Observation 5.5 (BIO algorithm as a nonconvex Dykstra algorithm) Replace the set A
with the (convex) object domain constraint set S and the set B with the (nonconvex) Fourier
domain constraint set M . Then the sequence (an + qn−1) generated by (29) corresponds to the
sequence (xn) generated by Fienup’s BIO algorithm (20).

Remark 5.6 Even when A ∩ B $= ∅, it is possible that the sequences (pn) and (qn) generated by
Dykstra’s algorithm (in its general form) are both unbounded ; see.101 This suggests the pertinent
sequence to monitor in Fienup’s BIO algorithm is

(
PM (xn)

)
, rather than (xn).

5.4 Fienup’s HIO algorithm and the Douglas-Rachford algorithm

When specialized to the convex feasibility problem (25), the Douglas-Rachford algorithm104 gener-
ates a sequence (xn), from an arbitrary starting point x0, by

xn+1 =
(
PA(2PB − I) + (I − PB)

)
(xn). (30)

For brevity, we set
T = PA(2PB − I) + (I − PB). (31)

If A is a closed vector space, then T can be written more symmetrically as T = PAPB + (I −
PA)(I − PB). Now let RA = 2PA − I be the reflector with respect to A and define RB likewise.
The following proposition gives an alternative description of the Douglas-Rachford algorithm that
lends itself to a simple geometrical interpretation (see Fig. 6).

Proposition 5.7 The mapping T in (31) can be written as T =
(
RARB + I)/2. Hence, (30) is

equivalent to
xn+1 = 1

2

(
RARB + I

)
(xn). (32)

The next two basic results on the Douglas-Rachford iteration are due to Lions and Mercier;106

see also.87,88 We include some proofs in Appendix A, as they appear to be simpler than those
found in the literature.

Fact 5.8 The mapping T in (31) is firmly nonexpansive.
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Fact 5.9 (Lions-Mercier106) Suppose A ∩ B $= ∅. Then the sequence (xn) generated by (32)
converges weakly to some point x ∈ FixT and PB(x) ∈ A ∩ B. Moreover, the sequence

(
PB(xn)

)

is bounded, and every weak cluster point107 of
(
PB(xn)

)
lies in A ∩ B. If H is finite-dimensional,

then xn → x and PB(xn) → PB(x) ∈ A ∩ B.

The following connection, which identifies HIO with the Douglas-Rachford algorithm, does not
seem to have been drawn elsewhere.

Observation 5.10 (HIO algorithm as a nonconvex Douglas-Rachford algorithm) Replace
the set A with the (convex) object domain constraint set S and the set B with the (nonconvex)
Fourier domain constraint set M . Then the sequence generated by the Douglas-Rachford algorithm
(30) corresponds to the sequence generated by the HIO algorithm (22).108

6 Concluding remarks

The contribution of this paper is two-fold. First, an analysis of the phase retrieval problem has
been carried out in the mathematical context of multi-valued projection operators. This analysis
provides rigorous and easily verifiable criteria for calculating projections. Second, new connections
have been established between some classical phase retrieval methods and some standard convex
optimization algorithms.

While the mathematical theory remains unable to completely analyze the convergence behavior of
these algorithms in nonconvex settings, the analogies drawn here open the door for experimentation
with variations that are well understood in convex settings. We believe that the convex-analytical
viewpoint adopted in this paper can be exploited further in order to develop alternative phase
retrieval schemes.

Appendix A – Proofs

Proof of Example 3.5: See Example 3.14 for a rigorous proof.

Proof of Example 3.6: This is a sketch of the proof; see Theorem 4.2 in40 for full details. Fix x ∈ L.

Because the Fourier transform is unitary, it follows that Π̂M (x) = ΠA(x̂). In turn, by Theorem 3.16,
the projection onto A can be found separably, provided that the selection is measurable. But the
projection onto the circle in C is easy: radially scale the point, and observe the multi-valuedness at
the origin. The step from the measurable selection to the measurable phase ϕ requires a measure-
theoretical argument; see Proof of Theorem 4.2 in.40

Proof of Fact 3.9: This is part of the folklore. See, for instance, Lemma 1.1 in.109
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Proof of Proposition 3.11: (i) is easily verified. (ii) Let (an) be a sequence in A converging to some
z ∈ L. A result by Riesz (see Theorem 12.6 in46 or Theorem 2.8.2 in110) implies that there exists
a subsequence (akn) of (an) that converges to z a.e. Since (akn(t))n lies in the closed set A(t) a.e.,
it follows that z(t) ∈ A(t) a.e. Consequently, A is closed.

Proof of Theorem 3.12: Since each set A(t) is closed convex and nonempty, the function y : t )→
PA(t)(x(t)), is well-defined. By Corollary 8.2.13(3) in60 (see also Exercise 14.17.(b) in68), y is
measurable. Pick an arbitrary a ∈ A. Then |x(t) − y(t)| ≤ |x(t) − a(t)| a.e. Squaring and
integrating yields y ∈ L and hence y ∈ ΠA(x). Since A is closed and convex by Proposition 3.11,
ΠA(x) is a singleton (Fact 3.9), which we write as y = PA(x).

Proof of Example 3.14: We first define A(t), depending on the case considered: (i) A(t) = C, if
t ∈ D; A(t) = {0}, otherwise, (ii) A(t) ≡ R, (iii) A(t) ≡ R+, respectively. Now let A be as in
Theorem 3.12. Note that A is nonempty, as it contains the zero function. Next, observe that in
each case, we can write A(t) = µ(t) · Z, where µ : RN → C is measurable and Z ⊂ C: indeed, (i)
Z = C and µ = 1D, (ii) Z = R and µ ≡ 1, (iii) Z = R+ and µ ≡ 1. In view of Remark 3.13,
t )→ A(t) is a measurable multifunction in each case. The result now follows from Theorem 3.12.

Proof of Theorem 3.16: Since A is a measurable multifunction, the function RN → R+ : t )→
d(ρ, A(t)) is measurable, for every ρ ∈ C (Corollary 8.2.13(2) in,60 Theorem 14.3 in68). On the
other hand, the function C → R+ : ρ )→ d(ρ, A(t)) is continuous (even nonexpansive), for every
t ∈ RN . Altogether, the function RN × C → R+ : (t, ρ) )→ d(ρ, A(t)) is a Carathéodory function;
see Definition 4.49 in.46 Now A $= ∅, hence A is nonempty-valued. By Theorem 17.5 in,46 the
multifunction A is weakly measurable. Now fix x ∈ L, and let f : RN ×C → R : (t, ρ) )→ −|x(t)−ρ|.
Then f(t, ρ) is measurable in t, and continuous in ρ; thus, f is also a Carathéodory function. The
Measurable Maximum Theorem (Theorem 17.18 in46) yields (i) t )→ d(x(t), A(t)) is a measurable
function, (ii) t )→ ΠA(t)(x(t)) is a measurable multifunction, with nonempty compact values, and
(iii) there exists a measurable selection z(t) ∈ ΠA(t)(x(t)). Clearly, z ∈ ΠA(x). (This first part of
the proof can also be contemplated from a higher perspective, see Section 8.2 in60). It remains to
prove the equivalence concerning ΠA(x). The “if” part is clear. We now suppose to the contrary
that the “only if” part is false. Then there exists a measurable function y ∈ ΠA(x) such that the
set E = {t ∈ RN : |x(t) − y(t)| > d(x(t), A(t))} has strictly positive measure. But then

d2(x,A) = ‖x − y‖2

=

∫

E
|x(t) − y(t)|2dt +

∫

!E
|x(t) − y(t)|2dt

>

∫

E
|x(t) − z(t)|2dt +

∫

!E
|x(t) − z(t)|2dt

= ‖x − z‖2

= d2(x,A),

(A1)

which is absurd.

Proof of Example 3.15: Recall that m ∈ L is the prescribed nonnegative modulus function. The
set of all functions satisfying the image modulus constraint is M = {z ∈ L : |ẑ| = m}. Note that
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M $= ∅, since m ∈ M . Let S be the closed unit circle in C, and set A(ω) = m(ω) ·S, for all ω ∈ RN .
The multifunction ω )→ A(ω) is compact-valued, nonempty-valued, and measurable (Remark 3.13).
Now let A = {z ∈ L : z(ω) ∈ A(ω) a.e.}. Then A is closed by Proposition 3.11.(ii). Consequently,
as the pre-image of A under a continuous operator, namely the the Fourier transform, the set M
is closed.111

Proof of Proposition 5.7: By simple expansion

RARB = (2PA − I)(2PB − I) = 2PA(2PB − I) + 2(I − PB) − I. (A2)

Hence, (31) yields T = 1
2(RARB + I).

Proof of Fact 5.8: (See also Proposition 2 in,106 Corollary 4.1 in.88) Because PA and PB are
projectors onto convex sets, they are firmly nonexpansive (Fact 3.9). Thus, by Fact 3.18, RA

and RB are nonexpansive. Hence the composition RARB is nonexpansive which, in turn, implies
(Fact 3.18 again) that 1

2(RARB + I) is firmly nonexpansive. In view of Proposition 5.7, the proof
is complete.

Fact A1 PB(FixT ) = A ∩ B ⊂ FixT .

Proof. Fix an arbitrary x ∈ H. Write x = b+q, where b = PB(x) and q = x−b. Then b = PB(x) =
PB(b+ q). The result follows from the equivalences x = T (x) ⇔ x = PA(2PB − I)(x)+ (I −PB)(x)
⇔ b + q = PA

(
2b − (b + q)

)
+ b + q − b ⇔ b = PA(b − q).

Proof of Fact 5.9: (See also Theorem 1.(iii) and Remark 7 in106 and Corollary 6.1 in88.112) By
Fact A1, FixT contains A ∩ B $= ∅. In view of Fact 3.20, the sequence (xn) =

(
Tn(x0)

)
converges

weakly to some fixed point x of T . Since PB is nonexpansive and (xn) is bounded, it follows that(
PB(xn)

)
is bounded. Since T is firmly nonexpansive, ‖xn − x‖2 ≥ ‖xn+1 − x‖2 + ‖xn − xn+1‖2,

which implies (after telescoping)

0 ← xn − xn+1 = PB(xn) − PA
(
2PB(xn) − xn

)
. (A3)

Hence weak cluster points of
(
PB(xn)

)
must lie in A ∩ B. Finally, if H is finite-dimensional, then

PB(xn) → PB(x) = PA
(
2PB(x) − x

)
∈ A.
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LIST OF CAPTIONS

Figure 1: POCS algorithm. The initial point a0 is projected onto B and then onto A. The point
a1 thus obtained belongs to both sets and the algorithm therefore converges in two steps. Note
that the solution a1 is not the projection of a0 onto A ∩ B.

Figure 2: Dykstra’s algorithm. The first two steps of this algorithm are identical to those of
POCS (Fig. 6). Here, however, although a1 ∈ A ∩ B, the algorithm does not reach convergence
at this point since the outward pointing normal q0 pulls the vector a1 + q0 out of B before it is
projected onto B. Through this process, two infinite sequences (an) and (bn) are generated that
converge to PA∩B(a0). Note that since A is an affine subspace in this example, pn ⊥ A and,
therefore, an+1 = PA(bn).

Figure 3: Douglas-Rachford algorithm. The update equation (32) is executed as follows: one
first computes the reflection rn+ 1

2
of xn with respect to B and then the reflection rn+1 of rn+ 1

2

with respect to A. The update xn+1 is the midpoint of the segment between xn and rn+1. In this
example the algorithm converges in 4 iterations since x4 ∈ A ∩ B.
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