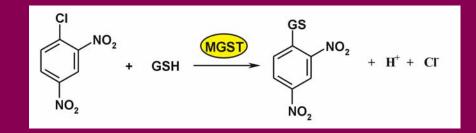

What did we learn from the structures of Membrane Associated Proteins in Eicosanoid and Glutathione Metabolism, MAPEG?

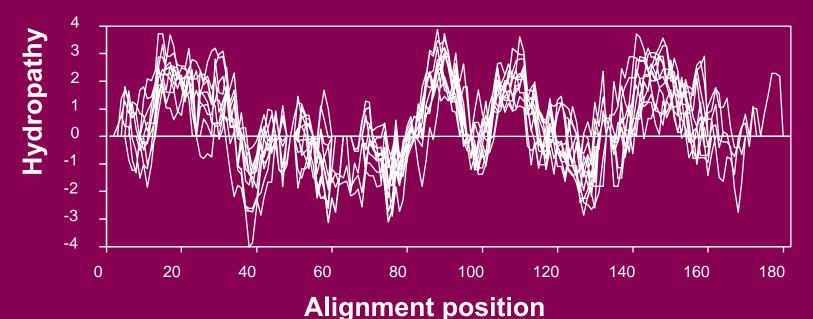
Hans.Hebert@ki.se, Hans.Hebert@sth.kth.se Caroline Jegerschöld, Qie Kuang, Pasi Purhonen



Eicosanoid and glutathione metabolism and MAPEG

 Synthesis of arachidonic acid derived substances

• Detoxification

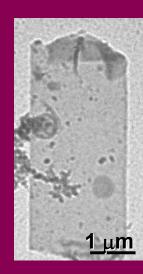


MAPEG superfamily

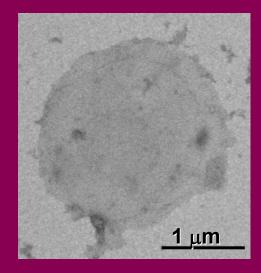
Membrane Associated Proteins in Eicosanoid and Glutathione Metabolism

- MGST1 Microsomal glutathione transferase 1
- MPGES1 Microsomal prostaglandin E synthase 1

- MGST2
- MGST3
- LTC4S, Leukotriene C₄ synthase
- FLAP, 5-lipoxygenase activating protein



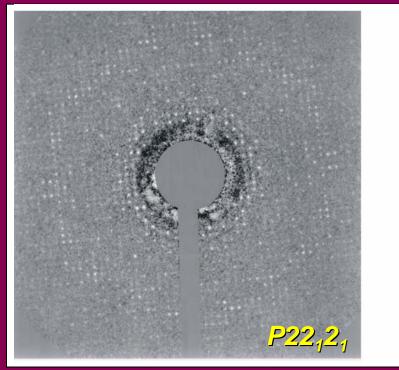
2D crystals of MGST1

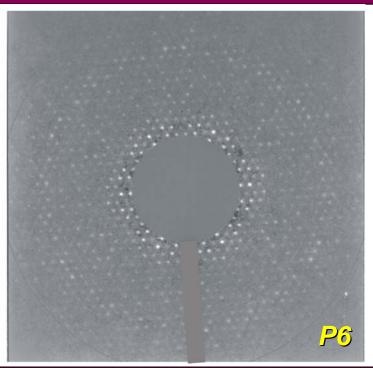

Purification

- Rat liver (3.1% of ER)
- Protocol:
 - Liver
 - Microsomes
 - Triton X100 solubilisation
 - Hydroxyapatite to bind MGST1
 - Cation exchange chromatography

2D crystallization Protein-detergent-micelles + Lipid-detergent-micelles Dialysis 2D crystals

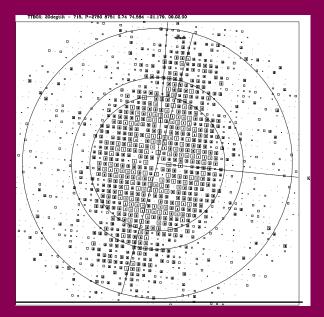
P22₁2₁ a=91.9 Å b=90.8 γ=90.0°

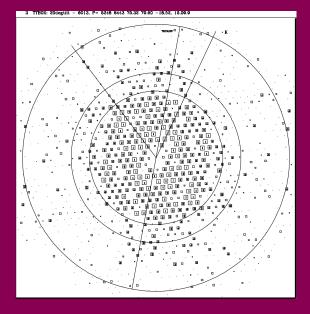



P6 a=81.8 Å b=81.8 γ=120.0°

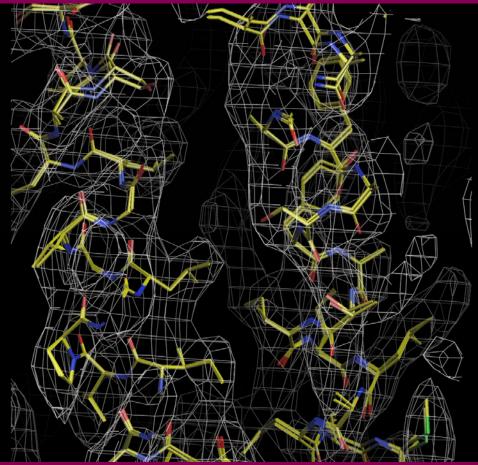
What did we learn from the MAPEG structures?

 MGST1 is a homotrimer with 12 TM helices


Electron diffraction intensities from the two crystal forms of MGST1


- 44 ED patterns, max tilt 60.6°
- I/σ (overall/(4.0-3.5 Å) 6.0/2.5
- R_{Friedel}/R_{merge} 24.9/34.7
- Observed/used amplitudes to 3.5 Å 29211/11073
- 120 patterns, max tilt 64.4°
- I/σ (overall/(4.0-3.5 Å) 12.1/6.0
- R_{Friedel}/R_{merge} 12.7/28.8
 Observed/used amplitudes to
- Observed/used amplitudes to 3.0 Å 51754/5154

Phase data from images of MGST1


- 77 images, max tilt 62.8°
- Phase residual overall/(4.0-3.5 Å) 21.6°/54.6°
- Observed/used phases to 3.5 Å 41132/9561

- 53 images, max tilt 62.9°
- Phase residual overall/(4.5-3.5 Å) 30.8°/42.4°
- Observed/used phases to 3.5 Å 17915/5300

Model building and crystallographic refinement

• Model building in O

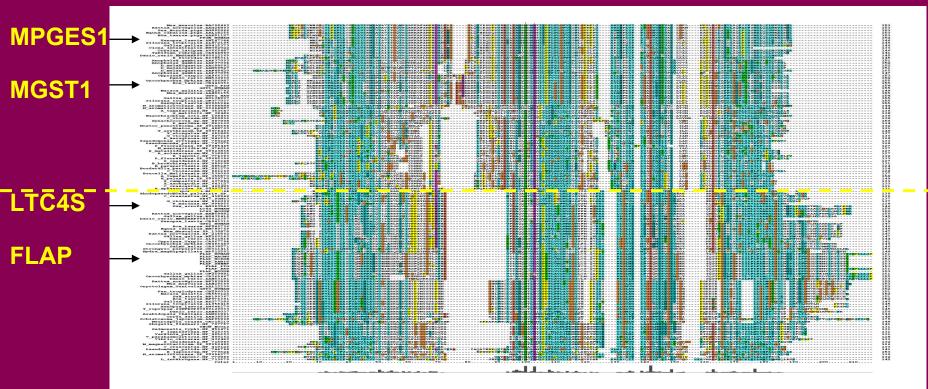

- Refmac5, P6 data
- Tight geometry constraints and restraints
- Observations/refinement parameters ~5.1
- R (10–3.2 Å) 33.9
- R_{free}(10–3.2 Å) 37.6
- R_{ort}(10–3.5 Å) 49.1

2Fo-Fc map, 1.2σ

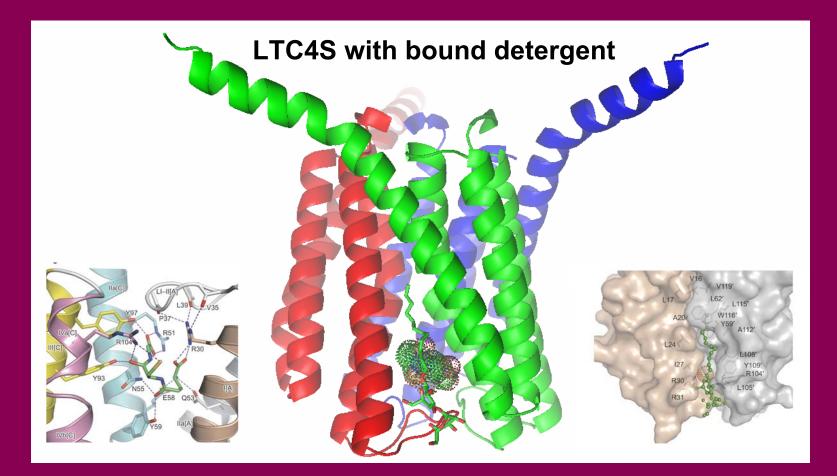
What did we learn from the MAPEG structures?

- MGST1 is a homotrimer with 12 TM helices
- Tracing of TM helices identified the common MAPEG fold
- Active site of MGST1 at the interface between monomers, TM1 and TM4 from neighbouring subunits

Cyclooxygenase pathways involving MAPEG members


Cyclooxygenase pathways involving MAPEG members

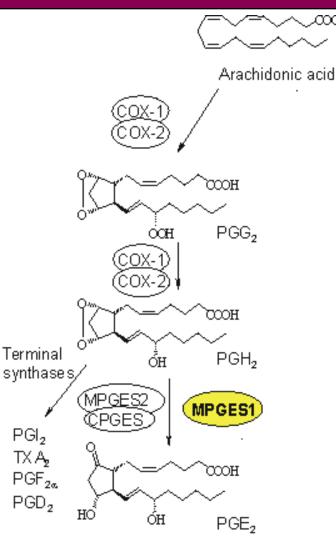
Arachidonic acid **FLAP** Ferguson et al. 2007 5-HpETE 5-HETE MGST MGST COOH LTB, ΤA, LTA, LTC4S Molina MGST et al. 2007 Ago COOH et al. 2007 . H., Cvs-Giv LTC, γ-Glu


Two MAPEG subfamilies

- MGST1
- Microsomal glutathione transferase 1
- MPGES1
- Microsomal prostaglandin E synthase 1

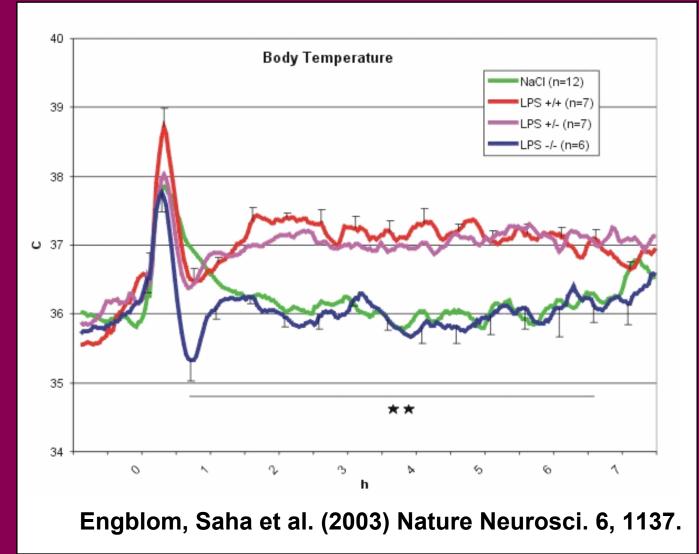
- MGST2
- MGST3
- LTC4S, Leukotriene C₄ synthase
- FLAP, 5-lipoxygenase activating protein


X-ray structures of FLAP and LTC4S


What did we learn from the MAPEG structures?

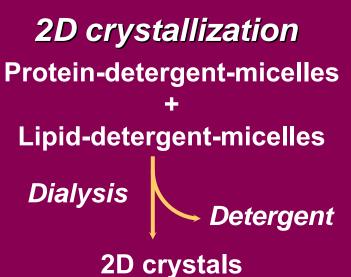
- MGST1 is a homotrimer with 12 TM helices
- Tracing of TM helices identified the common MAPEG fold
- Active site of MGST1 at the interface between monomers, TM1 and TM4 from neighbouring subunits
- GSH binds in a U-shaped conformation
- Thiol group of GSH positioned for activation by a nearby arginine (R104) at the membrane-enzyme interface
- Ligand/inhibitor binding at the site suggested from the MGST1 structure

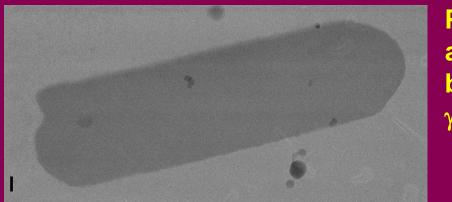
Cyclooxygenase pathways involving MAPEG members


Cyclooxygenase pathways involving MAPEG members

MPGES1...

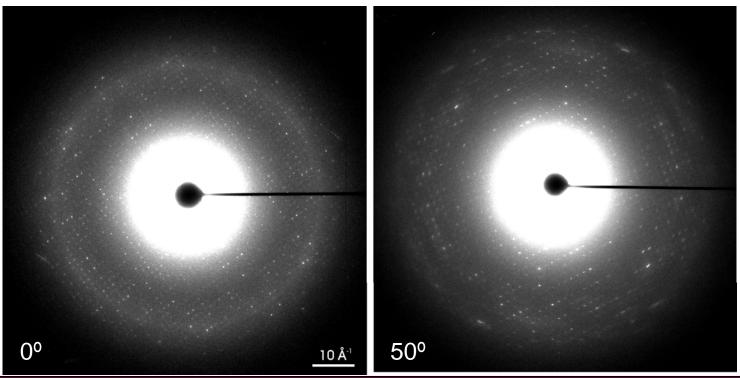
- □ catalyzes the oxidoreduction of prostaglandin endoperoxide H₂ into PGE₂ with an apparent k_{cat}/K_m of 310mM⁻¹s⁻¹.
- is mainly an induced isomerase, whereas cPGES and MPGES2 are constitutive enzymes.
- □ is the terminal enzyme in the catalytic pathway producing PGE₂.
- is a potential target for the development of therapeutic agents for treatment of several diseases.

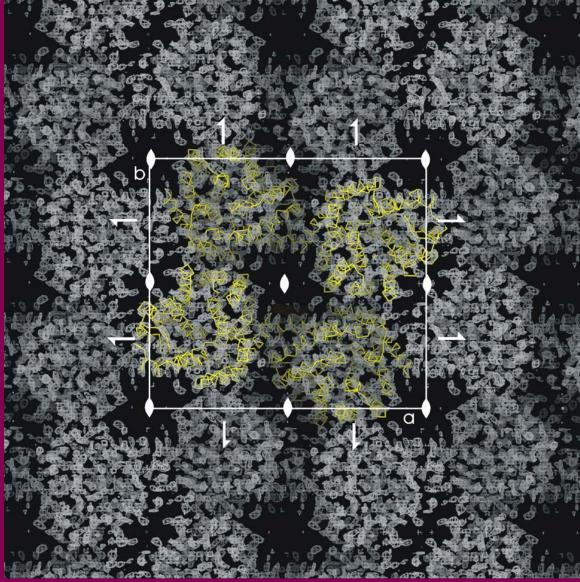

MPGES1 k.o. mice fail to develop fever after LPS treatment



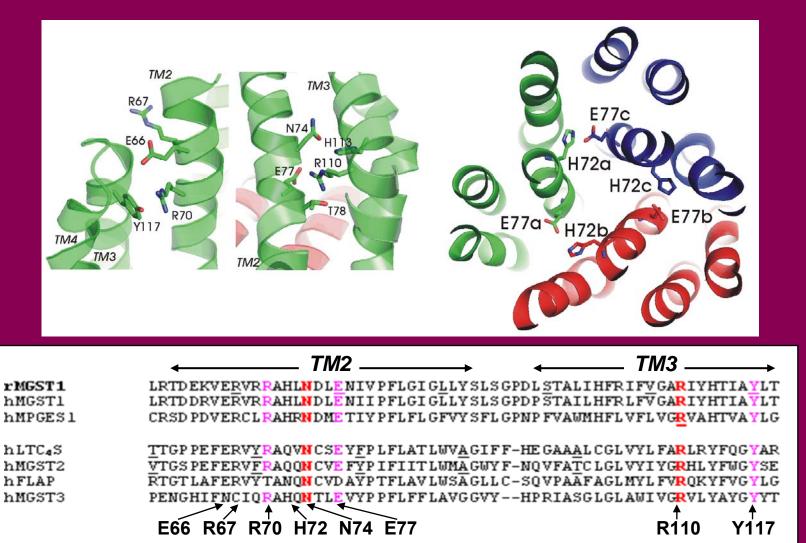
2D crystals of MPGES1

Purification


- N-terminal His₆-tag
- pSP19T7LT vector
- E. coli BL21(DE3) cells
- HA/IMAC chromatography
- Desalting/gel electrophoresis
- 0.5 1 mg/ml protein in 1 % Triton X-100, 100 mM NaPi, 50 mM NaCl, 10% glycerol, 1 mM GSH, and 0.1% EDTA.

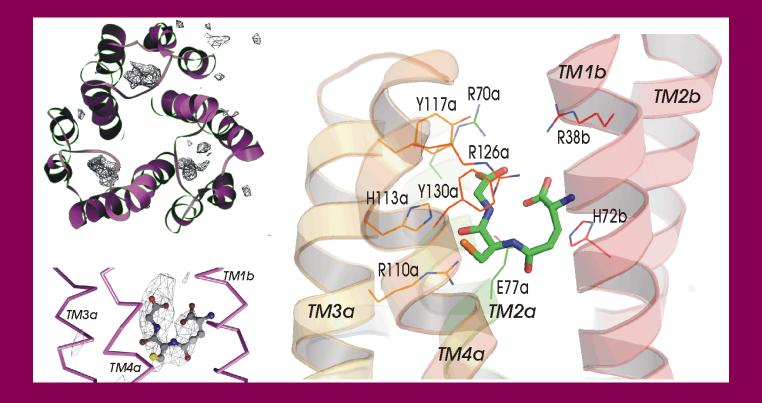

P22₁2₁ a=93.2 Å b=84.6 γ=90.0°

Electron diffraction intensities from 2D crystals of MPGES1

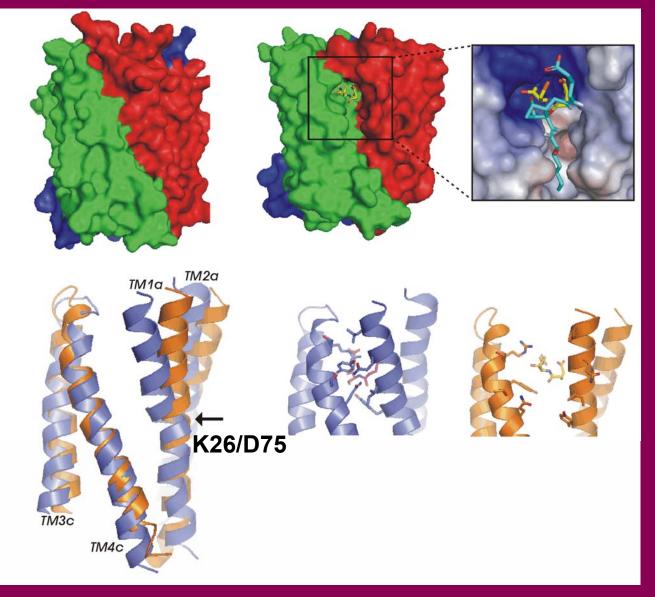


- 100 ED patterns, max tilt 62.0°
- F/σ (overall/(4.0-3.5 Å)) 4.5/3.5
- R_{Friedel}/R_{merge} 14.4/46.1
- Observed/used amplitudes 45035/6185
- Resolution in an normal to membrane plane 3.5/4.2 Å.
- Tilt pairs to resolve heterogeneity

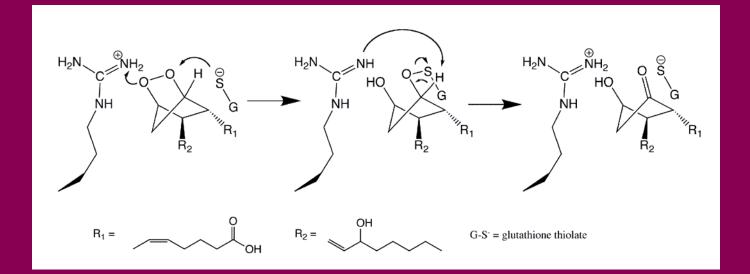
Molecular packing of MPGES1 as determined by molecular replacement



MPGES1 structure



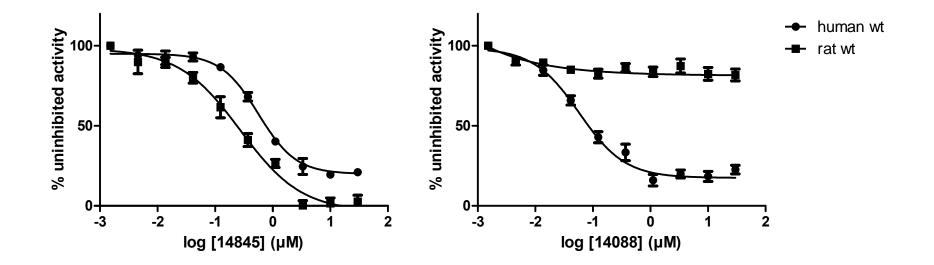
Jegerschöld et al. 2008


MPGES1 structure

Open/closed conformation

Suggested chemical mechanism

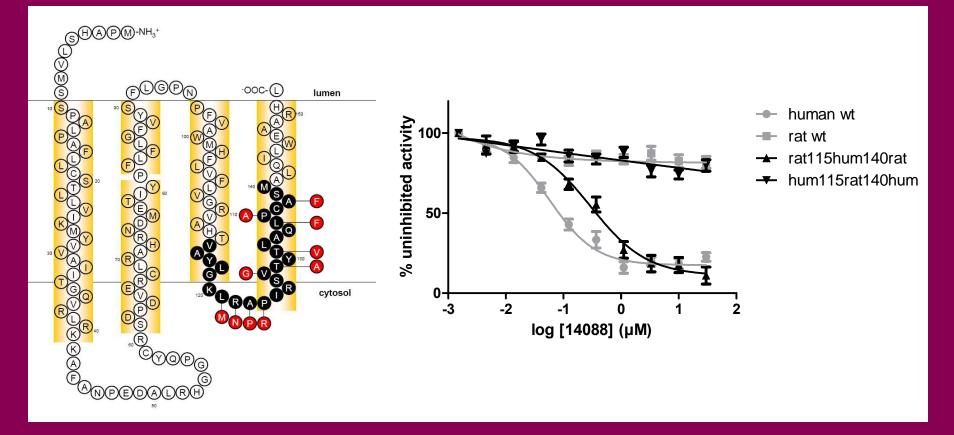
Attack of the GSH thiolate on O₉ of the endoperoxide bridge

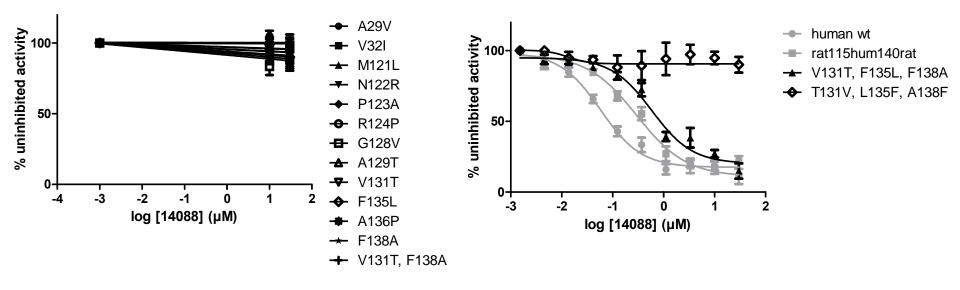

Poton donation to O₁₁ via R126

R126 abstracts a proton from C_9 , a carbonyl is formed

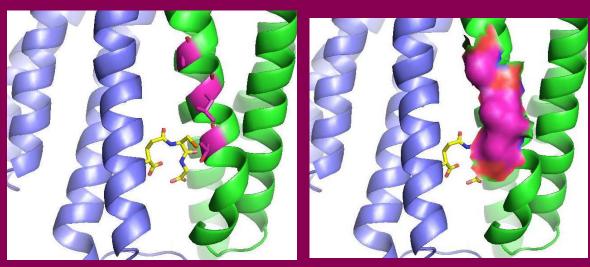
What did we learn from the MAPEG structures?

- MGST1 is a homotrimer with 12 TM helices
- Tracing of TM helices identified the common MAPEG fold
- Active site of MGST1 at the interface between monomers, TM1 and TM4 from neighbouring subunits
- GSH binds in a U-shaped conformation
- Thiol group of GSH positioned for activation by a nearby arginine (R104) at the membrane-enzyme interface
- Ligand binding at the site suggested from the MGST1 structure
- U-shaped GSH also in MPGES1
- Structural comparisons suggest conformational change during catalysis at a hinge in TM1
- Suggested chemical mechanism

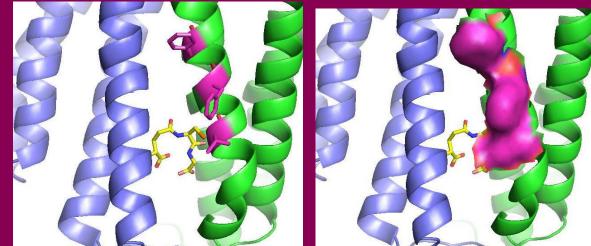

Inhibition of rat and human recombinant mPGES-1


KLRAPIRSVT YTLAQLPCAS MALQILWEAA RHL KMNPRIRSGA YVLAQFACFS MALQILWEVA HHL KLNPRLRSGA YVLAQFSCFS MALQILWEVA HHL ++++++TM4++++++++

Chimeric enzymes rat115hum140rat, hum115rat140hum



Pawelzik et al. 2010


Triple mutant V131T, F135L, F138A

Triple mutant V131T, F135L, F138A

Human MPGES1

Rat MPGES1

What did we learn from the MAPEG structures?

- MGST1 is a trimer with 12 TM helices
- Tracing of TM helices identified the common MAPEG fold
- Active site of MGST1 at the interface between monomers, TM1 and TM4 from neighbouring subunits
- GSH binds in a U-shaped conformation
- Thiol group of GSH positioned for activation by a nearby arginine (R104) at the membrane-enzyme interface
- Ligand binding at the site suggested from the MGST1 structure
- U-shaped GSH also in MPGES1
- Structural comparisons suggest conformational change during catalysis at a hinge in TM1
- Suggested chemical mechanism
- Mutations at specific postions in the MPGES1 structure alters inhibitor binding properties.

Acknowledgments

Structural studies: Caroline Jegerschöld Pasi Purhonen Qie Kuang

Role of MPGES1 in pain, fever, RA...: Sipra Saha Karina Gheorghe

MGST1/MPGES1 collaborators: Ralf Morgenstern Per-Johan Jakobsson Sven-Christian Pawelzik *AIST, Tokyo/Kyoto Univ:* Kaoru Mitsuoka Nobuhiko Gyobu Yoshinori Fujiyoshi

From one of our MAPEG meetings

Vanderbilt University: Richard Armstrong, Laura Busenlehner

MGST1

Data collection and refinement statistics

	Two-dimensional crystal parameters		
•	Two-sided plane-group	p22121	p6
•	Unit cell (Å)	a=91.9	a= 81.8
•		b=90.8	b= 81.8
•		c=100.0*	c=100.0*
•		γ =90.0 °	γ=120.0°
	Phase determination from images		
•	Number of images used	77	53
•	Maximum tilt angle (°)	62.8	62.9
•	Resolution in and normal to membrane plane (Å)**	3.5/7.0	3.5/7.0
•	No. of observed/used phases	41132/9561	17915/5300
•	Fourier space sampled (%)	73.4	74.4
•	Phase residual, overall/4.0-3.5 Å resolution shell (°)	21.6/54.6	30.8/42.4
	Amplitude determination from electron diffraction		
•	No. of diffraction patterns	44	120
•	Maximum tilt angle (°)	60.6	62.6
•	Resolution in and normal to membrane plane (Å)**	3.5/4.5	3.0/4.0
•	No. of observed/used amplitudes	29211/11073	51754/5154
•	Fourier space sampled, overall/3.35-3.16 Å (p6) (%)	58.3	78.3/64.3
•	l/s, overall/4.0-3.5 Å	6.0/2.5	12.1/6.0
•	RFriedel (%)	24.9	12.7
•	Rmerge (%)	34.7	28.8
	Crystallographic refinement		
•	Resolution (Å)		10.0 –3.2
•	No. of reflections		4409
•	No. of atoms, protein/substrate		964/20
•	Rwork (%)		34.8
•	RFree (%)		36.9
•	Rort ***(%)		49.1
•	Overall B-factor		34.5
•	R.m.s. deviations		
•	Bond lengths (Å)		0.014
•	Bond angles (°)		1.866
•	Ramachandran plot distribution (%)		60.0/38.1/1.9/0.0

MPGES1

Data collection and refinement statistics

	Two-dimensional crystal parameters		
•	Two-sided plane-group	p22121	
•	Cell dimensions		
•	a, b, c (Å)	93.2, 84.6, 100.0*	
•	γ (°)	90.0	
	Amplitude determination from electron diffraction		
•	No. of diffraction pattern	100	
•	Maximum tilt angle (°)	62.0	
•	Resolution in and normal to membrane plane (Å) [†]	3.5/4.2	
•	No. of observed/used amplitudes	43035/6185	
•	Fourier space sampled (%)	58.8	
•	F/σ, overall/4.0-3.5 Å	4.51/3.51	
•	R _{Friedel} (%)	14.4	
•	R _{merge} (%)	46.1	
•	Crystallographic refinement		
•	Resolution (Å)	10.0 – 3.5	
•	No. of reflections	6185	
•	No. of atoms, protein/substrate	3396/60	
•	Rwork (%)	35.2	
•	RFree (%)	39.4	
•	R.m.s. deviations		
•	Bond lengths (Å)	0.012	
•	Bond angles ()	1.612	
•	Ramachandran plot distribution (%)	79.6/17.5/2.7/0.3	
•	*Assumed for sampling along z* For lattice line adaption a thickness of 65 Å was		

• *Assumed for sampling along z*. For lattice line adaption a thickness of 65 Å was used.

• [†]From calculation of point spread function