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Abstract

A defining property of a crystal is its symmetry. This mini-review sets out to summarize all aspects that define 2D crystallographic
symmetry as applied to the study of macromolecular structure. It begins by defining molecular point symmetries, before covering crys-
tallographic symmetry operations in 2D, common notation, a summary of crystallographic plane groups and theoretical methods and
important considerations for the identification and application of symmetry in 2D crystal images for 3D structure determination. While
many of the concepts covered here may be equally applicable to point symmetry and space group symmetry in 3D, this review has been
written from the perspective of 2D electron crystallography and deals specifically with symmetry operations and crystallographic space
groups in 2D crystal projection images.
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1. Introduction

Symmetry is a property which exists in objects and
structures as diverse as natural and synthetic materials,
mathematical equations and musical compositions. At a
broad, fundamental level, symmetry implies that an object
can be rearranged in some way without changing its
appearance. Spatially, this can be thought of as a manipu-
lation imposed on the object (e.g. rotation) leading to some
interchange of points in space, but which results in an
arrangement which is indistinguishable from the original.
Such manipulations are termed symmetry operations.

All symmetry operations require a point, axis, or plane
of reference, about which they are applied. This reference
is termed the symmetry element (e.g. axis of rotational sym-
metry, plane of mirror symmetry) and is characterized by
the fact that points lying on the element, remain unchanged
following the symmetry operation. The above definitions
suggest that many objects contain several symmetry ele-
ments, all of which can be applied individually or in com-
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bination. Indeed this is the case, and it follows that for such
objects this ‘‘set’’ of all symmetry operations adheres to the
rules of a mathematical group. The set of all symmetry
operations applicable to the object is therefore referred to
as the symmetry group of the object.

Structural biology benefits greatly from the presence and
correct identification of symmetry, which is often present in
2D and 3D crystals as well as multi-subunit macromolecu-
lar assemblies—true symmetry in the strictest sense does
not exist as every molecule is different due to, for example,
conformational flexibility and molecular thermal motion,
however, where the overall assembly is close enough to a
given symmetry, its imposition is justified. This allows
accurate, averaging of symmetry-related data-points in
3D space and in turn greatly assists in the determination
and refinement of 3D structure. A basic example is the
averaging of each half of a homo-dimer with the other to
increase the quality of the final reconstruction.

This review summarizes the relevance of symmetry to
the analysis of two-dimensional (2D) crystals by covering
crystallographic symmetry operations in 2D, common
notation, a summary of all the 2D space groups, and theo-
retical methods and important considerations for the iden-
tification and imposition of symmetry in 2D crystal images.
Inc. All rights reserved.
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While many of the concepts covered here may be equally
applicable to point symmetry and space group symmetry
in 3D, this review has been written from the perspective
of 2D electron crystallography and will deal specifically
with symmetry operations and crystallographic space
groups in 2D.

2. Molecular symmetry

Molecular structures are often defined in terms of the
point group that they belong to, or alternately as having
particular point symmetry. The term point symmetry
derives from that fact that a point symmetry operation is
one which leaves at least one point in space unmoved (Ber-
nal et al., 1972; Glazer, 1987).

In general terms, point symmetry usually comes in one
of five flavors; cyclic, dihedral, tetragonal, octahedral (or
cubic) and icosahedral. The simplest of these are the cyclic

point groups, having one axis of n-fold rotational symme-
try, where n is an integer greater than 1 (Fig. 1A). Theoret-
ically, n has no maximum however some of the highest
cyclic point groups observed for proteins to date are seen
in the structures of the bacteriophage SPP1 portal protein,
gp6 (C13 symmetry) (Orlova et al., 1999), a chloroplast
ATP synthase (C14 symmetry) (Seelert et al., 2000) whilst
larger structures such as the S. typhimurium type III secre-
tion needle (19- to 22-fold) (Marlovits et al., 2004) and the
S. enterica M-ring (24- to 26-fold) and C-ring (32- to 36-
fold) flagellar rotor components (Thomas et al., 2006) are
known to have higher but variable symmetry.
Fig. 1. Point symmetry in molecular structures. (A) The p97 ATPase
(Zhang et al., 2000) (PDB ID = 1E32) has C6 symmetry. (B) GroEL
(Ranson et al., 2001) (PDB ID = 2C7E) has D7 symmetry. (C) Insect
ferritin (Hamburger et al., 2005) (PDB ID = 1Z6O) differs from other
ferritins in that it has tetrahedral symmetry. (D) The Hsp16.5 complex
(Kim et al., 1998) (PDB ID = 1SHS) has octahedral or cubic symmetry.
(E) The viral capsid of bacteriophage PRD1 (Abrescia et al., 2004) (PDB
ID = 1W8X) is an example of icosahedral symmetry. In each example, the
regular polyhedron defining the symmetry of the molecule is superimposed
on the structure. Rotation axes are indicated by arrows, with the length of
the arrow corresponding to the order of rotational symmetry (i.e. 6-fold
rotation symmetry indicated by an arrow demonstrating a one-sixth turn).
In the octahedral example, the 4-fold axis (- - -) is orthogonal to the
direction of view. Structures are not to scale.

Please cite this article in press as: Landsberg, M.J., Hankamer, B., S
phy, J. Struct. Biol. (2007), doi:10.1016/j.jsb.2007.07.002
Dihedral point groups, like the corresponding Cn struc-
ture, have a similar axis of n-fold rotational symmetry,
but additionally have a 2-fold rotation axis orthogonal to
the main axis of rotation (i.e. two, Cn rings stacked on
top of one another, with equivalent surfaces of the ring
in contact, would typically generate the corresponding Dn

point group; Fig. 1B).
Tetragonal structures such as insect ferritin (Hamburger

et al., 2005) belong to the same symmetry group as a regular
tetrahedron and contain 12 copies of the asymmetric unit
(Fig. 1C). Specifically, they have two distinct sets of 3-fold
rotation axes (four copies of each; 4 · 3 = 12) and six 2-fold
axes (6 · 2 = 12) and are thus often referred to as having 3–
2 symmetry. Structures with cubic or octahedral symmetry
such as the Hsp16.5 small heat shock protein from M. Jann-

aschii (Kim et al., 1998) have six 4-fold rotation axes, eight
3-fold rotation axes and twelve 2-fold (4–3–2 symmetry)
and are thus 24-fold symmetric (Fig. 1D).

Many viruses assemble into structures with icosahedral

symmetry (Caspar and Klug, 1962) with some of the best
characterized examples including Rice Dwarf, Semliki For-
est, bacteriophage PRD1 and Hepatitis B viruses (Abrescia
et al., 2004; Bottcher et al., 1997; Mancini et al., 2000;
Zhou et al., 2001). These have the same symmetry as a reg-
ular icosahedron or dodecahedron and feature twelve 5-
fold rotation axes, twenty 3-fold rotation axes and thirty
2-folds, hence icosahedral structures are often referred to
as having 5–3–2 symmetry and contain 60 copies of the
asymmetric unit (Fig. 1E).

3. Crystallographic symmetry

The fundamentals of molecular point symmetry intro-
duced above form the basis for a fuller explanation of crys-
tallographic symmetry. Protein crystals (2D and 3D) are
essentially a regularly arrayed lattice of molecular struc-
tures, however, some point symmetry operations are for-
bidden in crystal symmetry. Additionally, crystals often
belong to a different symmetry group compared with the
point group of the molecular building block (Schenk
et al., 2005; Vonck et al., 2002). By calculating all permu-
tations arising from the combination of each allowed crys-
tallographic symmetry operation (rotation, mirror, glide,
screw, roto-inversion), we arrive at a finite number of sym-
metry groups (crystallographic space groups) which collec-
tively describe all possible crystallographic packing
arrangements. A total of 230 space groups define all possi-
ble crystallographic packing arrangements. Consequently,
any 3D crystal will conform to the symmetry rules of at
least one of these groups. For protein crystals, only 65 of
these space groups are possible. The other 165 space groups
contain mirror symmetry, forbidden in protein crystals
because all naturally occurring amino acids are chiral mol-
ecules with ‘‘L’’ stereochemistry; the mirrored molecule
having ‘‘D’’ stereochemistry does not naturally occur. Elec-
tron crystallographers typically work with so-called ‘‘2D’’
crystals, which are usually no more than one to two mole-
ymmetry: A guide to its application in 2D electron crystallogra-



M.J. Landsberg, B. Hankamer / Journal of Structural Biology xxx (2007) xxx–xxx 3

ARTICLE IN PRESS
cules thick. Projection images of 2D crystals can be
described by the symmetry rules of at least one of the 17
plane groups (so named because they occupy a single plane
in 3D space, by convention the xy plane).
3.1. Crystal parameters

All crystals can be built from a minimum, asymmetric,
repeating motif (the asymmetric unit). It contains no inter-
nal symmetry and therefore cannot be generated by the
application of a symmetry operation to some subset of
the points it is composed of (Fig. 2). The asymmetric unit
of a crystal can also be the unit cell, but quite often it is
not. The unit cell is effectively a tile within a repeated pat-
tern—it must be possible to generate the crystal solely by
placing several thousand copies of the unit cell together
end to end, with no spaces or gaps (Fig. 2). Importantly,
this can only be achieved by translating the unit cell along
a vector exactly equal in magnitude to the unit cell length in
the direction of translation. No other manipulation of the
unit cell is permitted—a crystal which breaks this rule indi-
cates that the unit cell has been incorrectly defined. Put
more succinctly, a unit cell is generated by the imposition
of point symmetry operations on the asymmetric unit,
while the imposition of translation symmetry operations
on the unit cell generates a crystal lattice.
3.2. Unit cells

The unit cell is defined as the smallest area exhibiting the
full point symmetry of the crystal. The unit cell of a 2D
crystal is often characterized by four parameters—the plane

group describing its symmetry as well as the physical
dimensions of the cell, vectors termed a and b (crystallo-
graphic convention denotes that b is horizontal and a
Fig. 2. Building blocks of a 2D crystal. A single star (bordered by grey
shading) represents the asymmetric unit of this pattern. It is impossible to
entirely reproduce the pattern shown by mere translation of one star. To
do so requires generation of a second ‘‘crystallographically related’’ star,
the mirror image of the first. This mirror symmetry operation generates
the unit cell (outlined by rectangular black border). The ‘‘crystallographic
dimer’’ of stars can then be tiled along a vector equivalent in magnitude to
the length of the unit cell in the direction of translation to generate the
pattern or ‘‘crystal’’ as shown.
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points downward), and the angle between these, c (by con-
vention 180P c P90) (Glaeser, 2007). Four unit cell geom-
etries are possible in 2D crystals, rhomboid (a„b, c > 90),
rectangle (a„b, c = 90), square (a = b, c = 90) or rhombus
(a = b, c = 120).

The unit cell of a 2D crystal can be either a primitive
or a centered cell. A primitive cell is the minimum, trans-
lationally repeated unit cell contained within the crystal,
or to describe this another way, encompasses a single lat-
tice point of the crystal. In some cases, however, the unit
cell of the crystal may contain more than one lattice
point. With respect to 2D crystals, unit cells of this type
are referred to as face-centered. The term derives from
the fact that the cell is equivalent to a single face of the
3D unit cell described by the same term, however in 2D
the ‘‘face’’ prefix is redundant as it is physically impossi-
ble for the unit cell of a 2D crystal to be centered any-
where other than on the face of the 3D space group
from which it derives.

An excellent example of the difference between a
primitive and centered cell is seen in the monomeric
porin OmpG which crystallizes in at least two forms
(Behlau et al., 2001). In the first crystal form, the pro-
tein packs such that a single lattice point consists of four
crystallographically related porin molecules (Fig. 3A).
This motif can be translated periodically in both dimen-
sions to reproduce the crystal and therefore is a primi-
tive unit cell. In the second crystal form the lattice
point consists of a crystallographic dimer (Fig. 3B). Clo-
ser examination of the crystal packing arrangement how-
ever reveals that the dimer is incorporated into a
pseudo-hexagonal packing arrangement. This crystal
packing arrangement can be reproduced from a primitive
unit cell by choosing an oblique cell (shown in red),
however this unit cell does not contain mirror symmetry.
A centered unit cell (shown in green), containing multi-
ple copies of the dimer, does however reproduce the full
crystal packing arrangement and in addition, contains
mirror symmetry. The centered cell is therefore chosen
to describe the space group of this molecule as it is
the simplest unit cell which describes the full symmetry
of the crystal. Of the 17 possible 2D space groups, 15
are primitive cells with the remaining two being centered
cells (Table 1).

4. Point symmetry operations

The crystallographic point group of a 2D crystal essen-
tially describes symmetry operations involving rotation of
the unit cell about an axis (or point in the projection
image), or generation of a mirror image about a plane
(or line). As will be explained below, there are a total
of 10 crystal point groups in 2D (Table 1, column 4),
nine of which derive from all possible combinations of
these two symmetry operations in addition to the point
group, 1, which describes crystals with no point
symmetry.
ymmetry: A guide to its application in 2D electron crystallogra-



Fig. 3. Primitive and centered cells. The monomeric porin OmpG
crystallizes in at least two forms (Behlau et al., 2001). (A) The p2gg form
is described by a primitive unit cell (red box). Symmetry-related structural
features have been highlighted with colored circles for the purpose of
identifying the periodicity in C. (B) A centered cell (green) is required to
describe the symmetry of the cm crystal form in its entirety. An alternate
primitive cell is outlined in red which describes the minimum, transla-
tionally repeated motif but this cell does not describe the full symmetry of
the crystal (i.e. it lacks a mirror plane). (A) and (B) adapted from Behlau
et al. (2001). (C) The structural information in (A) has been reduced to a
1D function coincident with one of the screw axes present in the crystal.
Note that the crystal has internal repetition along this axis with a
periodicity of b/2. (D) Primitive cells (red) are the smallest unit cell
required to describe the minimum repeating motif of the crystal, while
centered cells (green) encompass multiple lattice points and thus have
internal repetition.
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4.1. Rotation symmetry

Crystal images with rotation symmetry are typically
termed n-fold rotationally symmetric, or as having a rota-
tion axis of order n. This implies that rotation of the image
by 360/n� results in a new orientation which is indistin-
guishable from the original. The symmetry element associ-
ated with rotation is strictly an axis, however in 2D crystal
images the axis is orthogonal to the image plane and so
rotation in 2D effectively occurs about a point in the image.

While molecular assemblies can theoretically have rota-
tion axes of infinite order, crystallographic structures are
restricted to having rotation symmetry of order 2, 3, 4 or
6. This derives from theories first put forward by R.-J.
Haüy as early as the turn of the nineteenth century (see
Senechal (1990)), who hypothesized that the basic building
blocks of crystals could be grouped into plane shapes that
filled space (Fig. 4). This theory severely limits the geome-
Please cite this article in press as: Landsberg, M.J., Hankamer, B., S
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try of the fundamental building blocks of a crystal, in that
only a rhomboid and the regular triangle, square and hexa-
gon efficiently fill space (i.e. can be arrayed infinitely with
no gaps or spaces). Note that these polygons exhibit 2, 3,
4 and 6-fold symmetry, respectively, and define the allowed
orders of rotational symmetry within crystal space groups.
The crystal restriction theorem, readily found in many
crystallography texts, further highlights this fact by essen-
tially stating that it is impossible to build a lattice with 5-
fold rotation symmetry, or any rotational symmetry of
order seven or higher. Importantly, this does not prohibit
a 5-fold symmetric assembly from crystallizing, but rather
prohibits the formation of a 5-fold symmetric crystal
lattice.

Rotation symmetry alone defines four of the 10 possible
2D crystal point groups: 2, 3, 4 and 6 are the 2D point
groups which contain a rotation axis of order 2, 3, 4 or
6, respectively. Rotation symmetry alone, however, does
not describe the point groups of all symmetric objects
and assemblies in nature. Additional crystallographic point
groups derive from the existence of mirror symmetry in the
projection of a structure.

4.2. Mirror symmetry

As mentioned previously, mirror symmetry is forbidden
in individual protein structures. However, it is important to
realize that 2D crystal images used in electron crystallogra-
phy can exhibit mirror symmetry. The key difference
between 2D crystals and their TEM projection images is
that in the latter, the true molecular 3D structure of the
2D crystal is compressed into a single plane (xy by conven-
tion). The result of this is an inability to discern structural
information relative to the z-axis and in the case of 2D
crystals specifically, an apparent loss of chirality in images
projected orthogonal to the plane of crystallization. Thus,
while true mirrors in 3D protein structures are not possible,
mirrors in untilted 2D projection images are (Fig. 5). Ulti-
mately, the 3D information can be recovered (with the
exception of the ‘missing cone’) by tilting specimens, but
it is important to remember that a single micrograph con-
sidered independent of any other contains no discernible
information orthogonal to the projected plane.

In an image with mirror symmetry (often referred to as
reflection symmetry) all points equidistant from, and along
a line orthogonal to the symmetry element are equivalent.
In 3D space, the mirror operation occurs about a plane.
In 2D, the mirror plane is always orthogonal to the image
plane, so the mirror element in 2D is therefore a line (or
axis). Mirrors are often said to give rise to 2-fold symmetry
as they yield two copies of the asymmetric unit.

Unlike rotational symmetry, which can generate multi-
ple point groups depending on the order of rotation (i.e.
2, 3, 4 and 6; recall 1 is no symmetry), a unit cell either
has or does not have mirror symmetry. Therefore, a unit
cell containing a single mirror element and no other sym-
metry belongs to the point group m. The remaining 2D
ymmetry: A guide to its application in 2D electron crystallogra-



Table 1
The 17 2D space groups

Plane groupa Unit cell geometry (Crystal systemb) Rotation order Point symmetry Glide 2D space groupd,e

p1 Rhomboid (Oblique) 1 1 N P1
p2 Rhomboid (Oblique) 2 2 N P2
pm Rectangle 1 m N P12
pg Rectangle 1 m Y P121

cm Rectangle 1 m N C12
p2mm Rectangle 2 2mm N P222
p2mg Rectangle 2 2mm Y P2221

p2gg Rectangle 2 2mm Y P22121

c2mm Rectangle 2 2mm N C222
p4 Square 4 4 N P4
p4mm Square 4 4mm N P422
p4gm Square 4 4mm Y P4212
p3 Rhombusc (Hexagonal) 3 3 N P3
p3m1 Rhombusc (Hexagonal) 3 3m N P321
p31m Rhombusc (Hexagonal) 3 3m N P312
p6 Rhombusc (Hexagonal) 6 6 N P6
p6mm Rhombusc (Hexagonal) 6 6mm N P622

a Hermann–Mauguin or International notation. Describes the symmetry of 2D projection images.
b Indicated if different from the unit cell geometry.
c Denotes rhombus with an internal angle of 60�.
d Describes the space group of 2D crystals (Holser, 1958) and gives rise to the plane group indicated in column 1 when projected at 0� tilt.
e The output from the MRC program ALLSPACE conforms to this notation with the exception that subscripted numerals appear as standard font in the

output.

Fig. 4. Rotational symmetries compatible with crystal packing. Only unit
cells with rotational symmetry of order two, three, four or six can
efficiently fill a single plane (no black space). These correspond to the only
allowed crystallographic symmetries. Regular polygons with either 5-fold
or 7-fold symmetry and above do not efficiently fill space (black space).
Adapted from Senechal (1990).
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point groups (2mm, 3m, 4mm and 6mm) derive from com-
binations of each order of rotation symmetry with mirror
symmetry, where a second m indicates that the symmetry
of the point group generates an additional mirror plane
orthogonal to the first.
Fig. 5. Mirror symmetry in 2D projection space. (A) 3D representations
of two identical chiral molecules with the same stereochemistry. One is
rotated 180� relative to the other. Projection of the 3D molecules in (A)
from the position of the eye onto the projection plane generates the
projection images shown in (B). Note that in these images, the relative
depth of the atoms along the z-axis can no longer be distinguished. Note
also that the two projection images are mirror images despite the fact they
derive from identical, chiral molecules.
5. Translation operations

Crystals differ from symmetric molecules and macromo-
lecular assemblies in that they contain additional symmetry
operations beyond those described by their point group.
This stems from the fact that they are a repeated array built
from the unit cell. The plane group of a 2D crystal describes
Please cite this article in press as: Landsberg, M.J., Hankamer, B., Symmetry: A guide to its application in 2D electron crystallogra-
phy, J. Struct. Biol. (2007), doi:10.1016/j.jsb.2007.07.002
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two types of symmetry, these being the point group symme-
try of the crystal as well as any additional symmetry oper-
ations involving translation. Unlike point symmetry
operations, translation operations do not leave any points
in space unmoved. All 2D crystals have two translational
symmetry operations along the unit cell vectors a and b.
Additionally, translation is often combined with other
symmetry operations (i.e. mirrors, rotation) to generate
more complex symmetry operations (i.e. glide, screw).

5.1. Glides and screws

Several symmetry operations restricted to 3D space can
occur in 2D crystals, as they are (thin) 3D objects. For
example, simple 2-fold rotation of asymmetric units about
an axis parallel to the crystallization plane yields mirror
symmetry in the projection image of a crystal (Fig. 5). This
reinforces the reason why mirrors are observed in 2D crys-
tal images.

More complex symmetry operations also take place in
3D space. The only operation applicable to biological mol-
ecules, however, is the screw operation. A screw operation
occurs about an axis (the general notation is an np screw
axis) and combines translation along the axis by a fraction
of the unit cell, p/n, followed by right-handed, n-fold rota-
tion about the same axis. For example, a 21 screw axis (n
= 2, p = 1) describes a translation of ½ (p/n) of the unit cell
followed by rotation of 180� (360/n) about the axis of
translation.

A screw operation is essentially a special application of
rotational symmetry and its degree of rotation is restricted
in the same way as a simple axis of rotation. Given that p

must be an integer value less than n, it follows that the pos-
sible screw axis operations are limited to 21, 31, 32, 41, 42,
43, 61, 62, 63, 64 and 65. The 32, 43, 64 and 65 operations
are often referred to as enantiomorphous operations, as
they are essentially left handed equivalents of the 31, 41,
62 and 61 screw operations, respectively.

2D crystals can, and often do, contain screw axes paral-
lel to the plane of crystallization. The 21 screw axis is par-
ticularly prevalent in 2D membrane protein crystals and in
fact is the only screw axis observed in crystals of this nat-
ure. The reasons for this are both spatial in that the crystal
thickness restricts the screw axis to the xy plane (theoreti-
cally, screw axes orthogonal to the membrane plane are
not forbidden, but to date, none have been reported),
and steric—the positioning of the hydrophobic transmem-
brane region of the protein within the lipid bilayer usually
means it is only possible for the protein to insert in the
membrane in either an ‘‘up’’ or ‘‘down’’ orientation (for
examples see Heymann et al. (2003); Levy et al. (1999)).
This means that the rotation operation will always occur
through 180�.

Recall that rotation of an object by 180� about an axis
within the 2D plane of the crystal results in a mirror plane
in the projection image of the crystal (Fig. 5). It thus fol-
lows that a 21 screw axis is manifested in a projection image
Please cite this article in press as: Landsberg, M.J., Hankamer, B., S
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as a translation by ½ of a unit cell, followed by a mirror
operation about the translation vector. This type of sym-
metry operation is termed a glide (the element is a glide
plane) and generates four further crystallographic space
groups in 2D; the m, 4mm and 2mm point groups all give
rise to plane groups which can contain glide symmetry,
the latter accommodating glide axes in two different
arrangements.

6. Crystallographic notation in 2D

6.1. Projection images and plane group notation

Towards the end of the nineteenth century, Fedorov,
Schönflies and Barlow independently enumerated the crys-
tallographic space groups which result from all possible
combinations of the crystallographically allowed symmetry
operations (see Blundell and Johnson (1976)). In 2D, there
are 17 possible space groups (wallpaper groups or referred
to herein as plane groups), at least one of which will serve
to describe any possible 2D crystal form. Of these, 16 have
been identified by the concepts described thus far–the 10
pure point symmetry space groups (p1, p2, p3, p4, p6,
pm, p2mm, p3m, p4mm, p6mm), the additional four space
groups which arise from a subset of these by the imposition
of glide symmetry (pg, p2mg, p2gg, p4gm), and a further
two centered-cell space groups (cm, c2mm). The final space
group arises from the fact that the 3m point group gener-
ates two space groups, depending on the location of the
mirror plane (p3m1, p31m). These 17 2D plane groups
are summarized in Table 1.

Plane groups are most commonly defined using the Her-
mann–Mauguin or International notation. As can be seen
in Table 1, this notation represents each plane group by
a maximum of four characters. The first, either p or c, indi-
cates a primitive or centered unit cell. The second is a digit
(1, 2, 3, 4 or 6) indicating the highest order of rotational
symmetry in the crystal. Note that for some space groups
with no rotational symmetry, the 1 is omitted. Note further
that only the highest rotational symmetry is indicated. For
example, the p4 space group also has a 2-fold rotation axis.
This is implied and does not need to be explicitly stated in
the space group definition.

The third and fourth characters indicate additional sym-
metry(s) and their position(s) relative to the main axis of
translation (i.e. the unit cell vector b). There are three
options here; an m indicates a mirror plane, a g indicates
a glide axis and a 1 (if present) indicates no symmetry.
The third character indicates a symmetry axis orthogonal
to the main axis of translation (b). The fourth character
indicates a symmetry axis either parallel to (for n = 2;
where n is the rotational symmetry of the plane group) or
rotated 180�/n (for n > 2) relative to the main axis of trans-
lation. The two space groups belonging to 3m point sym-
metry can now be delineated; p3m1 has a mirror plane
rotated 90� relative to the unit cell vector b, while p31m

has a similar symmetry plane 60� rotated from b.
ymmetry: A guide to its application in 2D electron crystallogra-
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A full description of the symmetry rules for the 17 crys-
tallographic plane groups is give in the International
Tables for Crystallography (Hahn, 2002). By way of exam-
ple, images of 2D crystals of the RC47 reaction center of
photosystem II (Rhee et al., 1997) demonstrate the symme-
try operations defining the space group p2gg. The unit cell
has a rotation axis of order two (Fig. 6A, S1). In addition,
the crystal contains glide symmetry in two directions. The
first glide axis is positioned orthogonal to main axis of
translation (unit cell vector b; Fig. 6B, S2), while the second
is parallel to b (Fig. 6C, S3). This crystal therefore con-
forms to the rules of space group p2gg and contains all
the symmetry elements described by it.

6.2. Space group notation for 2D crystals

At this point, it is important to make a distinction
between the space group assigned to a 2D crystal projec-
tion image and the space group of a 2D crystal. Projection
Fig. 6. Symmetry operations of the space group p2gg. Crystals of the photosy
1997). Each row indicates a different symmetry operation and each column w
symmetry operation. (A) A 2-fold rotation axis is positioned orthogonal to the
illustrate the rotation. (B) A glide axis is indicated by the vertical dashed line
(frames 2 and 3) and then reflected about the element (frame 4). (C) A second g
as indicated for B. Note that in frame 4 of all panels, the unit cell superimpos
indicating that the symmetry operation generates symmetrically related s
Supplementary material.
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images of 2D crystals can be described by one of the 17
plane groups outlined above and referred to by the Her-
mann–Mauguin notation. The 2D crystal itself though is
described by a different space group. As mentioned previ-
ously, 2D crystals are truly 3D in nature and symmetry
operations such as mirrors and glides, while allowed in
2D crystal projection images, are forbidden in 2D crystals
of proteins. Similarly, screws and rotation axes in the plane
of the crystal are possible in 2D crystals but are not present
in plane group definitions.

Fortunately, the notation used to describe the space
group of a 2D crystal (Table 1, column 6) maps somewhat
trivially to the Hermann–Mauguin notation used to
describe the plane group of untilted crystal projection
images (Amos et al., 1982). The characters used to indicate
a primitive or centered cell remain the same (P or C), how-
ever it is conventional to indicate the type of unit cell of a
2D space group using a capital letter rather than the lower
case notation used for the plane groups. Mirror planes
stem II RC47 reaction center belong to the space group p2gg (Rhee et al.,
ithin the row shows selected steps of an animation which illustrates the

plane of the page at the center of the magenta diamond. Frames 2, 3 and 4
. The unit cell is translated in the direction of this axis by half a unit cell
lide axis is indicated by the horizontal dashed line with subsequent frames
es perfectly on the structural information in the target area of the image,

tructures. Adapted from Rhee et al. (1997). Movies are available as

ymmetry: A guide to its application in 2D electron crystallogra-



8 M.J. Landsberg, B. Hankamer / Journal of Structural Biology xxx (2007) xxx–xxx

ARTICLE IN PRESS
(indicated by m in plane groups) are replaced by a 2 subse-
quent to the order of rotation symmetry. This derives from
the fact that, as shown earlier, mirror symmetry in a projec-
tion image arises from the presence of a 2-fold axis of rota-
tion within the plane of crystallization. In the same
manner, glide planes (indicated by a g in plane groups)
are replaced by a 21 which indicates a 21 screw axis. Thus
by way of example, the space group of a 2D crystal, the
untilted projection image of which belongs to plane group
p2mm, is denoted P222. Similarly, a 2D crystal projection
image belonging to plane group p2gg derives from a 2D
crystal belonging to space group P22121.

7. Symmetry and image processing

7.1. Image processing in Fourier space

The Fourier transform of a crystal describes its structure
in reciprocal space and is non-zero only at a regular array
of points, often referred to as diffraction spots. Diffraction
spots lie on a periodic lattice defined by the basis vectors a*

and b*, the magnitudes of which are inversely proportional
to the respective real space vectors a and b, and can be
derived from the general formula for a 3D unit cell, given
in (Blundell and Johnson, 1976) as

a� ¼ Kbc sin a
V

; b� ¼ Kca sin b
V

where V¼ abcf1þ2cosacosbcosc� cos2 a�cos2 b� cos2 cg1=2.
Given that in the case of a 2D crystal c is by convention

orthogonal to the ab plane, it follows that the angles a and
b are always 90� and the formulae thus reduce to

a� ¼ K

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 c

p ; b� ¼ K

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 c

p

where K is a constant and the included angle, c*, is given by
(180�c).

By determining the reciprocal lattice vectors of a crystal,
it is subsequently possible to identify the coordinates of
each reciprocal lattice point (diffraction spot) within the
crystal Fourier transform. Given that all structural infor-
mation pertaining to the crystal is sampled at these lattice
positions, it is then possible to eliminate a large fraction
of the background noise from 2D crystal images by mask-
ing out the diffraction spots in Fourier space (Fourier
filtration).

Lattice points are often described in terms of a (h k)
coordinate system, where h and k are integer multiples of
the reciprocal lattice vectors a* and b*, respectively. For
example, the position of the (21) reflection is located by
the vector sum 2a* + b*. In 3D, a third coordinate, l, is
used to describe the reciprocal lattice in the third dimen-
sion, however 2D crystals exhibit no lattice in 3D and the
Fourier transform of a 2D crystal is in fact a continuous
function in the direction of the z* axis. In images of untilted
specimens—the only images from which symmetry can be
accurately determined—l (or alternatively, z*) always
Please cite this article in press as: Landsberg, M.J., Hankamer, B., S
phy, J. Struct. Biol. (2007), doi:10.1016/j.jsb.2007.07.002
equals 0. Thus for simplicity, coordinates are only referred
to here in the format (h k).

7.2. Crystallographic symmetry in Fourier space

Real space and Fourier space representations of data
are intrinsically linked, such that any symmetry present
in real space crystal images must also be preserved in
Fourier space. This important property can be derived
from first principles, and is significant at two levels of
electron crystallographic image processing. First, the
space group of a crystal can be reliably determined
through the identification of symmetry within the Fourier
transform of the crystal. Second, once the space group of
a crystal is know, a better estimate of the true structural
information described by the transform can be obtained
by Fourier averaging of symmetry-related data points
identified by the symmetry rules of the crystallographic
space group.

At a first pass, potential crystal symmetries can be nar-
rowed down using the shape of the diffraction pattern, or
more specifically the values of a*, b* and c*. For example,
a crystal with 4-fold rotation symmetry will have a square
unit cell, meaning that c approximates to 90� and a � b. As
a further example, a crystal having 6-fold rotation symme-
try will always exhibit hexagonal packing, meaning the unit
cell will have a value of approximately 120� for c. This in
turn means that c* � 60�, so the p6 and p6mm unit cell in
real space will always have a hexagonal lattice in Fourier
space, with the first order reflections (01), (10), (1 �1),
(0 �1), (�10) and (�1 1) positioned at the vertices of a reg-
ular hexagon. Unfortunately, this will not distinguish
between a p6 and a p6mm crystal. Nor will it distinguish
the three space groups with 3-fold rotational symmetry,
as these also exhibit a hexagonal lattice (due to the exis-
tence of Friedel pairs in Fourier space).

Investigation of the unit cell parameters can therefore
assist in narrowing down the possible space groups of a
crystal, but in practice it is necessary to compare the actual
phase and amplitude measurements at each lattice point to
fully elucidate the space group of a crystal. Systematic
absences, if present, can also give clues as to the space
group of a crystal.

7.3. Systematic absences

Another useful tool for evaluating the space group of a
2D crystal is the identification of systematic absences
within a crystal Fourier transform. Systematic absences
are the result of symmetry forbidden reflections, a phenom-
enon which results from periodicity within the crystal
occurring over less than a full unit cell. Such periodicity
occurs where glide or screw symmetry is present in the crys-
tal or where a centered cell has been chosen to describe the
crystal. Axial or zonal systematic absences arise from
screws and glides, respectively, and in 2D, for example,
cause the systematic absence of all odd reflections along
ymmetry: A guide to its application in 2D electron crystallogra-



Table 2
Symmetry-forbidden reflections in 2D space groups

Projection
symmetry

Crystal
symmetry

Real space glide
parallel to

Systematic absences
(n = any integer)

pg P121 b (0 k): k = 2n + 1
cm C12 — (h k): h + k = 2n + 1
p2mg P2221 a (h 0): h = 2n + 1
p2gg P22121 a,b (0 k): k = 2n + 1

(h 0): h = 2n + 1
c2mm C222 — (h k): h + k = 2n + 1
p4gm P4212 a,b (0 k): k = 2n + 1

(h 0): h = 2n + 1
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b* (where the glide is parallel to real space vector b). When
the structural information is condensed into a 1D function
along a single vector coincident with the screw axis, it can
be seen that the pattern repeats with a periodicity equal to
half the unit cell (b/2; see Fig. 3C). Translated into recipro-
cal space, this means the true periodicity of the lattice
becomes 2b* and hence every odd reflection along b*

becomes symmetry forbidden.
Choosing a centered cell to describe a crystal leads to

what are known as integral systematic absences. Due to
the fact that a centered cell encompasses two lattice points
(causing internal repetition; Fig. 3D) the centered cell gen-
erates twice as many theoretical reflections as the alternate
primitive cell of the same crystal. Half of the reflections
generated by the centered cell are therefore symmetry for-
bidden. A summary of the systematic absences expected
for the five 2D plane groups in which they occur is given
in Table 2.
Fig. 7. Centrosymmetric space groups have a requirement that all phases
must equal 0� or 180�. This is because the cosine function must be symmetric
about the real space phase origin, and this is only possible when the phase of
the cosine wave is 0� (A) or 180� (B). If the wave is displaced by any other
amount relative to the origin (as shown in (C) for 90�) the symmetry is lost.
7.4. Phase comparisons

Friedel’s law states that the diffraction spots (h k) and
(�h �k) have equal intensities (or amplitudes) and oppo-
site phases. Above and beyond this relationship, the intro-
duction of symmetry dictates that lattice points related by
symmetry (not necessarily Friedel pairs, for example, in
p3) have theoretically identical amplitudes and phases. This
provides the basis for rules allowing for the space group of
a crystal to be unequivocally assigned based purely upon a
list of amplitude and phase measurements at each lattice
point in the Fourier transform.

Perhaps the most commonly used software for symme-
try evaluation in electron crystallography is the ALLSPACE

routine (Valpuesta et al., 1994) within the MRC (Crowther
et al., 1996) and 2DX (Gipson et al., 2007) image processing
packages, the latter of which uses a modified version of the
original MRC program. ALLSPACE evaluates the data in a
crystal Fourier transform and attempts to assign a space
group to the crystal based on a table of phase comparisons
(phase measurements are usually more accurate than
image-derived amplitudes owing to the effects of factors
such as the contrast transfer function, specimen charging
and drift, on image contrast). In this way, phase residuals
(the difference between measured phases and theoretical
or average values) are often used to identify the quality
Please cite this article in press as: Landsberg, M.J., Hankamer, B., S
phy, J. Struct. Biol. (2007), doi:10.1016/j.jsb.2007.07.002
of the fit of crystallographic data to the rules of a particular
space group and are also used to assess the quality of data
used to resolve a structure.

Consider the case of a crystal belonging to plane group
p2. In this example, the corresponding Fourier transform
must also have 2-fold rotation symmetry. This means that
not only must the amplitudes of any diffraction spot be the
same as the spot to which it is directly opposite (i.e. when
rotated 180� about the origin) but their phases must also be
equal.

Taking this a step further, consider the true nature of a
Fourier transform of a 2D projection as being essentially a
2D frequency space representation of a series of waves
(cosine functions) which reconstruct the real space image.
For an image with 2-fold rotation symmetry, these cosine
waves must therefore also be symmetric about the real
space phase origin. To satisfy this, the peak or trough of
the cosine wave must be positioned at the origin (corre-
sponding to a phase shift of 0� or 180�, respectively;
Fig. 7). Such space groups, referred to as centrosymmetric,
are therefore easily detected by the observation that all
phases approximate to either 0� or 180� (provided the data
have been shifted to their appropriate real space origin).
This holds true not only for the space groups with rotation
ymmetry: A guide to its application in 2D electron crystallogra-
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axes of order two (p2, p2mm, p2mg, p2gg, c2mm), but also
for all higher order space groups which have inherent 2-
fold rotational symmetry (i.e. all space groups with 4-fold
or 6-fold rotation symmetry; p4, p4mm, p4gm, p6, p6mm;
Fig. 8).

The identification of symmetry in Fourier space can be
extended to all symmetry operations. For a crystal with
inherent 3-fold rotation symmetry (i.e. p3, p3m1, p31m,
p6 and p6mm space groups), the reflections related by a
120� rotation about the origin (e.g. the first order reflec-
tions (10) (0 �1) and (�11)) have theoretically identical
phases. It follows that the presence of p3, p3m1 and
p31m symmetry can be differentiated from p6 and p6mm

as the latter will also adopt phases of 0� and 180� as they
are centrosymmetric. By extension of this theory, the p4,
p4mm and p4gm space groups are characterized by the
presence of inherent 2-fold symmetry as outlined above,
along with the additional restraint that rotation by 90� will
yield identical phases (e.g. the (11), (�1 �1), (�1 1) and
(1 �1) reflections will all be identical; Fig. 8).

Similarly, where mirror symmetry is present in the real
space projection image of a crystal, there is also mirror
Fig. 8. Symmetry in Fourier space. Crystals of CHIP28/AQP-1 belong to
plane group p4gm (Mitra et al., 1994). Amplitude and phase data are listed
in parentheses next to the corresponding bold circled spot. The (20) and
(02) reflections (black) are related by 4-fold rotation symmetry and mirror
symmetry and therefore have near identical phases (the mirror axes in
p4gm bisect the lattice vectors). The glide axes in p4gm lie parallel to the
unit cell vectors, meaning the (14) and (1 �4) reflections should
theoretically be out of phase by 180� (red), as are the (41) and (4 �1)
reflections (blue). Additionally, (14) and (4 �1) are related by 4-fold
rotation symmetry, as are (41) and (1 �4). Note that the phase
measurements of symmetry-related spots are significantly more precise
than the amplitude measurements. Note also that this space group is
centrosymmetric, meaning all phases approximate to 0� or 180�. Adapted
from Mitra et al. (1994).
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symmetry in the Fourier transform. Diffraction spots equi-
distant from and along a line orthogonal to the mirror
plane of the Fourier transform are expected to have identi-
cal phases (Fig. 8). If a glide plane is present, the same
spots are related as in mirror symmetry, with the difference
being that the screw causes a phase shift of 180� (Fig. 8).

For plane groups with a single mirror or glide plane, the
position of the symmetry element is important in identify-
ing symmetry-related reflections. For example, by conven-
tion the mirror plane of a pm unit cell is located parallel to
b. In Fourier space, this translates to the (11) and (�1 1)
reflections being related by symmetry. If a* and b* are
incorrectly identified or interchanged (which frequently
occurs, for example, when a and b have comparable mag-
nitudes) this symmetry rule no longer holds. However,
the (11) and (1 �1) now become symmetry-related, as the
mirror plane is merely mislocated relative to the reciprocal
lattice vectors. ALLSPACE therefore searches 21 plane group
definitions in order to accommodate the four plane groups
(pm, pg, cm, p2mg) for which the positions of glide or mir-
ror planes relative to unit cell vectors are important. This
means it is possible to detect the presence of symmetry in
a crystal, even if the diffraction pattern has been indexed
incorrectly.

By using the rules summarized above for the detection
of rotation, mirror and glide symmetry it is possible in
the majority of cases to identify unequivocally the plane
group of a 2D crystal based purely on a table of phase com-
parisons. Where the plane group is not immediately clear, it
is sometimes possible to differentiate between alternative
plane groups by combining these rules with information
on systematic absences, Importantly, only the modified
programs in 2DX version 2.1 and later consider systematic
absences when assigning a space group, however due con-
sideration should be given to the fact that systematic
absences can be broken under certain conditions (e.g. rela-
tively thick specimens, negative stain). By way of compar-
ison, the original ALLSPACE relies on the fact that amplitude
and phase measurements at the coordinates of symmetry
forbidden reflections have a very low signal-to-noise ratio
and are therefore drastically down weighted when convert-
ing diffraction data to a 3D model or 2D projection map.

8. Considerations for symmetrical averaging of data

The preceding sections of this review have discussed sev-
eral key concepts pertaining to the symmetry of 2D crystals
and ways of identifying symmetry in 2D crystal projection
images. It is important to note however that these symme-
try rules are easily broken if a number of assumptions
regarding the data in question are not met.

While 2D projection images contain the full 3D infor-
mation of the specimen, they do not delineate this informa-
tion along the z-axis. It is normal to acquire images of tilted
specimens in order to recover this 3D information, however
plane group symmetry rules will only remain valid for the
analysis of untilted specimen images. This stems from the
ymmetry: A guide to its application in 2D electron crystallogra-
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fact that upon tilting a specimen, diffraction spots that were
previously related by symmetry now sample different values
in z* (in fact, approximately inverse values, depending on
the resolution and curvature of Ewald’s sphere) and there-
fore are no longer identical. Crystal tilts of as little as 2�
can completely abolish symmetry (Unger et al., 1997), par-
ticularly in thick specimens. It is thus imperative that the
space group of a crystal is determined from crystal images
with 0� tilt.

Equally important is the assumption that images used
for space group determination do not exhibit any signifi-
cant astigmatism. For a non-astigmatic image, the effect
of the CTF is uniform at equivalent distances from the ori-
gin, and since symmetry-related reflections are themselves
equidistant from the origin, they are all affected by the
CTF uniformly (i.e. what was the same in Fourier space
prior to being multiplied by the CTF, remains the same
afterwards). When astigmatism is introduced this clearly
is no longer the case. Astigmatism distorts the CTF into
an ellipsoid meaning that the modulation of amplitude
data by the CTF at symmetry-related lattice points is no
longer uniform.

The plane group symmetry rules of a crystal only ever
hold when the crystal unit cell is centered relative to the
plane group it belongs to, i.e. the data must be shifted to
the crystallographic phase origin. ALLSPACE achieves this
by systematically shifting the unit cell data in both direc-
tions and testing the symmetry at each location. In this
way, it is possible to identify the putative plane group of
a crystal and the corresponding phase origin at the same
time.

For negatively stained specimens, symmetry detection
can often be adversely influenced by the contribution of
symmetry artifacts resulting from the stain exclusion pat-
tern. This usually results in over-estimation of the crystal
symmetry (Unger, 2000) and for this reason, it is often sug-
gested that the plane group of a crystal is independently
confirmed (i.e. from a vitrified specimen) prior to imposing
higher order symmetries in particular. Symmetry artifacts
may also be revealed by sub-symmetries not being identi-
fied by symmetry detection programs (i.e. the absence of
p3 symmetry from a proposed p6 crystal would suggest
the p6 symmetry is an artifact).

Finally, when merging data it is important to check the
symmetry of each dataset, ensuring only the lowest
detected symmetry is imposed on the merged data. For
example, whilst projection symmetry is lost in tilted speci-
mens, most 2D space groups impose other constraints
along certain lattice lines in 3D. Such verification is impor-
tant in identifying rare cases where the 2D space group of a
crystal may not be the same as what is suggested from the
plane group of untilted projections. It is also important to
verify symmetry when moving to progressively higher reso-
lution as macromolecular assemblies frequently have
higher apparent symmetry at low resolution. For example,
the insect ferritin structure in Fig. 1 appears to have cubic
symmetry at low resolution, however at higher resolution,
Please cite this article in press as: Landsberg, M.J., Hankamer, B., S
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the differences between the heavy and light chains of this
hetero-oligomer become apparent and the symmetry
reduces to tetrahedral.
9. Concluding remarks

This mini-review provides an in depth summary of the
key concepts relating to electron crystallographic symme-
try. In particular it aims to provide structural biologists
new to the field of electron crystallography with a solid
basis allowing for the accurate identification of symmetry
and the subsequent application of symmetry based averag-
ing in structure refinement. Furthermore, it provides a
summary of useful information for more advanced users.
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Barber, J., 1997. Two-dimensional structure of plant photosystem II at
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