

## SPACE GROUPS AND <br> SYMMETRY

Michael Landsberg

Electron Crystallography Workshop C－CINA，Basel，1－7 Aug 2010
m．landsberg＠uq．edu．au


## Averaging

－Why single molecule EM techniques are far superior in resolution than electron tomography

from 1 image （ $10^{2}-10^{3}$ unit cells）


3d from 100s of class averages


3d from several images（104？ unit cells）

## What is symmetry?

- An object is symmetrical if, when an operation is applied, the result of the operation is indistinguishable
- Imposing symmetry is a form of averaging


What symmetry is. How do we identify it. How do we take advantage of it,

## Molecular symmetry

Cyclic symmetry


C6


C5 supercomplex

Dihedral symmetry


D6

Ludtke et al. Structure (2004) 12:1129-36

Tetrahedral symmetry


Insect Ferritin

Octahedral symmetry


Hsp16.5

Icosahedral symmetry


Virus

## Crystallographic symmetry

- A 2D crystal is generated by consecutively shifting a unit cell, ad infinitum, along either of two vectors ( $a$ or $b$ ) separated by an included angle ( $\gamma$ )
- All crystals have translation symmetry

asymmetric unit unit cell 2D array crystal


## Group theory

- A crystallographic space group is the mathematical group of symmetry operations which apply to both the given unit cell and the crystal array
- Finite number of crystal packing arrangments
- There are 230 possible crystallographic space groups in 3D
- 65 for proteins and chiral molecules
- 17 plane groups describe all the possible symmetry arrangements in projection images of 2D crystals
- These plane groups are different (but correlate somewhat trivially) to the 17 2D space groups which describe all possible 2D crystal arrangements


## Rotation

$n$-fold rotational symmetry dictates that rotation about a point by an angle of $360 \% n$ generates an image indistinguishable from the original

$360 / 2=180^{\circ}$

$360 / 4=90^{\circ}$

$360 / 3=120^{\circ}$

$360 / 6=60^{\circ}$
why no 5 fold?


## Unit cell geometry

Unit cells in projection can be one of 4 different shapes


Rhomboid (oblique, monoclinic)

$$
\mathbf{a} \neq \mathbf{b} ; \gamma \geq 90
$$



Square (tetragonal)

$$
\mathbf{a}=\mathbf{b} ; \gamma=90
$$



Rectangle (rectangular)

$$
\mathbf{a} \neq \mathbf{b} ; \gamma=90
$$



Rhombus (hexagonal)
$\mathrm{a}=\mathrm{b} ; \gamma=120$

## Rectangular unit cells are a special case

- 15 of the 17 possible 2D space groups are primitive cells. The remaining 2 are centered cells
- A primitive cell describes a minimal motif repeate by lattice translations
- A centered cell contains internal repetition



## Rectangular unit cells are a special case

- 15 of the 17 possible 2D space groups are primitive cells. The remaining 2 are centered cells
- A primitive cell describes a minimal motif repeate by lattice translations
- A centered cell contains internal repetition
- Either describes the crystal correctly, but the centered cell "buys you more symmetry"


Behlau et al. J Mol Biol (2001) 305:71-77

## Reflection

- Also known as mirror or bilateral symmetry
- Any two points perpendicular to and equidistant from the line of reflection are identical



## Translation + Reflection = Glide Reflection

Translation by $1 / 2$ unit cell combined with a reflection about a line parallel to the direction of translation


[^0]square

## Plane group notation

## Hermann-Mauguin style

- Begins with either por c, for a primitive cell or a face-centered cell
- This is followed by a digit, $n$, indicating the highest order of rotational symmetry: 1-fold (none), 2-fold, 3-fold, 4-fold, or 6-fold
- The next two symbols indicate symmetries relative to the "main" translation axis of the pattern; if there is a mirror perpendicular to a translation axis this is the main one (or if there are two, one of them).
- The symbols are either $\boldsymbol{m}, \boldsymbol{g}$, or $\mathbf{1}$, for mirror, glide reflection, or none.
- The axis of the mirror or glide reflection is perpendicular to the main axis for the first letter...
- ...and either parallel or tilted $180^{\circ} / n$ (when $n>2$ ) for the second letter.


## Plane group definitions



## Group theory

- A crystallographic space group is the mathematical group of symmetry operations which apply to both the given unit cell and the crystal array
- There are 230 possible crystallographic space groups in 3D
- 65 for proteins and chiral molecules
- 17 plane groups describe all the possible symmetry arrangements in projection images of 2D crystals
- These plane groups are different (but correlate somewhat trivially) to the 17 2D space groups which describe all possible 2D crystal arrangements


## Symmetry operations in 2D crystals

In-plane center of rotation

- A rotation axis centered in the $x z$ or yz plane
- A 2-fold in plane center of rotation is equivalent to a mirror in 2D projection space

2-fold center of rotation

- mirror plane



## Symmetry operations in 2D crystals

## Screw axis

- Translation by $1 / n$ unit cell combined with a rotation by $360 \%$ about the axis of translation
- A $\mathbf{2}_{1}$ screw axis is equivalent to a glide plane reflection in 2D



## Plane groups and 2D space groups

| Plane group | Unit cell geometry | Highest order | Point group | Glide/screw | 2d space group |
| :--- | :--- | :---: | :---: | :---: | :--- |
| p1 | rhomboid (oblique) | 1 | 1 | N | P 1 |
| p2 | rhomboid (oblique) | 2 | 2 | N | P 2 |
| pm | rectangle | 1 | m | N | P 12 |
| pg | rectangle | 1 | m | Y | $\mathrm{P} 1_{1} 1_{1}$ |
| cm | rectangle | 1 | m | N | C 12 |
| p2mm | rectangle | 2 | 2 mm | N | P 222 |
| p2mg | rectangle | 2 | 2 mm | Y | $\mathrm{P} 22_{1}{ }_{1}$ |
| p2gg | rectangle | 2 | 2 mm | Y | $\mathrm{P} 22_{1} 2_{1}$ |
| c2mm | rectangle | 2 | 2 mm | N | C 222 |
| p4 | square | 4 | 4 | N | P 4 |
| p4mm | square | 4 | 4 mm | N | P 422 |
| p4gm | square | 4 | 4 mm | Y | $\mathrm{P} 42_{1} 2^{2}$ |
| p3 | rhombus (hexagonal) | 3 | 3 | N | P 3 |
| p3m1 | rhombus (hexagonal) | 3 | 3 m | N | P 321 |
| p31m | rhombus (hexagonal) | 3 | 3 m | N | P 312 |
| p6 | rhombus (hexagonal) | 6 | 6 | N | P 6 |
| p6mm | rhombus (hexagonal) | 6 | 6 mm | N | P 622 |

## Real space example - RC47 crystal

## p2gg (P22, 21)

- 2 fold rotational symmetry
- 2 x glide axes

2-fold center of rotation

-     -         - glide axis



## Real space example - RC47 crystal



## Real space example - RC47 crystal



## Real space example - RC47 crystal



## The centrosymmetric condition

- Symmetry in real space is preserved in reciprocal space
- All space groups with 2-fold symmetry must have phases universally equal to 0 or 180 degrees
- These are the only phases which satisfy the requirement that symmetry is conserved in Fourier space



## Systematic absences

- Symmetry forbidden reflections result when a crystal has periodicity over less than one unit cell
- Axial/zonal systematic absences arise from glides/screws > Loss of odd reflections
- Integral systematic absences arise when a centered cell is chosen
> Twice as many reflections



```
periodicity
    b
```


## Fourier space example - CHIP28 (Aqp1)

- $a=b, \gamma=90$
- square unit cell
- all phases $=0 / 180$
- centrosymmetric space group
- points related by 4-fold rotation are equal
- base symmetry is p4
- odd reflections absent
- spots equidistant from a* are out of phase by 180

- glide symmetry


## CHIP28 (Aqp1) in real space

## p4gm (P42,2)

- 4 fold rotational symmetry
- 1 pair of glide axes
- 1 pair of mirror lines

4-fold center of rotation

-     -         - glide axis
$\longrightarrow$ mirror line


Searching for symmetry - ALLSPACE \& 2DX

|  | Phase re <br> v.other <br> (90 ran | id (No) pots m) | Phase re v .theore <br> (45 ra | $\begin{aligned} & \text { id (No) } \\ & \text { ical } \\ & \text { dom) } \end{aligned}$ | OX | OY |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 29.8 | 176 | 22.0 | 176 |  |  |
|  | 62.6 | 88 | 31.3 | 176 | -55.7 | -17.6 |
|  | 76.7 | 38 | 32.7 | 12 | -85.6 | 120.0 |
|  | 64.8 | 37 | 28.1 | 10 | -170.0 | 54.8 |
|  | 66.6 | 38 | 35.1 | 12 | 89.6 | -145.0 |
|  | 58.9 | 37 | 32.2 | 10 | -185.0 | -40.6 |
|  | 76.7 | 38 | 32.7 | 12 | -85.6 | 120.0 |
|  | 64.8 | 37 | 28.1 | 10 | -170.0 | 54.8 |
|  | 72.0 | 163 | 31.2 | 176 | 122.4 | 160.9 |
|  | 72.4 | 163 | 38.0 | 176 | 5.3 | 139.3 |
|  | 71.4 | 163 | 38.0 | 176 | 89.2 | 140.5 |
|  | 75.5 | 163 | 38.8 | 176 | -180.4 | 149.7 |
|  | 72.0 | 163 | 31.2 | 176 | 122.4 | 160.9 |
|  | 65.2 | 172 | 31.6 | 176 | -58.7 | 161.0 |
|  | 72.6 | 369 | 31.8 | 176 | -58.9 | 160.6 |
|  | 73.2 | 369 | 31.9 | 176 | -58.9 | -19.6 |
|  | 62.2 | 118 | -- | -- | -158.7 | -81.0 |
|  | 72.3 | 298 | 23.5 | 20 | -154.9 | -69.8 |
|  | 70.0 | 305 | 28.5 | 34 | 154.9 | -165.9 |
|  | 72.0 | 324 | 31.8 | 176 | 120.9 | 161.0 |
|  | 73.5 | 691 | 39.5 | 176 | -39.0 | -170.8 |

Why 21 space groups?

## Other considerations

- When might symmetry fall apart?
- Plane group symmetry rules only hold for untilted specimens
- Astigmatism causes a non-uniform effect of the CTF on symmetry related spots, potentially making symmetry evaluation unreliable
- Symmetry rules only hold when data are shifted to phase origin
- Stain exclusion patterns can cause over-estimation of symmetry
- Low resolution data may also over-estimate symmetry
- Always check for the satisfaction of sub-symmetries to help
- ALLSPACE does not check for systematic absences
- Check that symmetry rules continue to hold when merging and moving up in resolution



[^0]:    Unit cell geometry
    rhomboid (oblique)
    rectangle

