

# Averaging

• Why single molecule EM techniques are far superior in resolution than electron tomography



single image



class average



3d from 100s of class averages



one unit cell



projection map from 1 image (10<sup>2</sup>-10<sup>3</sup> unit cells)



3d from several images (10<sup>4</sup>? unit cells)

# What is symmetry?

- An object is symmetrical if, when an operation is applied, the result of the operation is indistinguishable
- Imposing symmetry is a form of averaging



What symmetry is. How do we identify it. How do we take advantage of it.



# Crystallographic symmetry

- A 2D crystal is generated by consecutively shifting a unit cell, ad infinitum, along either of two vectors (a or b) separated by an included angle (γ)
- All crystals have translation symmetry

| ಕೆಯ        | tott             | 1       | the state | 10       | the state | the state | 100   | ೆಗೆ      | ೆಗ       | 1     | ೆಗೆ        | of the  | ೆಗ       | ೆಗೆ         | of the  | ೆಗೆ        | 1      | the second  | 11     | the th                         | A.                                                                                                                                           | det.         |                   | the state  | 5.00    | 4   |
|------------|------------------|---------|-----------|----------|-----------|-----------|-------|----------|----------|-------|------------|---------|----------|-------------|---------|------------|--------|-------------|--------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|------------|---------|-----|
| 111        | ជិជិជិ           | ធិធិ    | ជិជិ      | ធិតិ     | 10        | ជាជ       | ធិធិ  | 1        | កើជី     | 1     | កើធិ       | 1       | n i      | កើធិ        | 1       | កើធិ       | 11     | ធិធិ        | ជាជ    | ជិដ                            | 1                                                                                                                                            | 11           | 1                 | កើធិ       | 1 Lin   | 1   |
| 171        | ជំជុំជុំ         | ារាំជុំ | ជាជុំ     | ជាជ      | ជាជុំ     | ជាជ       | ជាជុ  | ni i     | ករុំជុំ  | nî î  | ណ៍ផ្       | ារិាភ្ន | กมามี    | ករាំផុ      | ក្តាជុំ | ករាំអ៊     | ជាជ    | ាភ្នំឆ្ន    | ជាជ    | ជាជ                            | nî î                                                                                                                                         | ាំដំ         | ាំដំ              | លាំផ       | นนัก    | 1   |
| 내니         | ANA              |         | 되니        | 걸쳐       | HH        | 11 H      | 필요    |          |          |       |            |         |          |             |         |            |        |             | 필요     | 필요                             |                                                                                                                                              |              |                   |            | HAN     | 2   |
| 122        | ជំងឺដំ           |         | ដដ        | 10       | 10        | 20        | 11    |          |          |       |            |         |          |             |         | 0.0        |        | 111         | 20     | 10                             |                                                                                                                                              | 1            |                   |            | 200     | i,  |
| 111        | ជំជំជំ           | ាំដ     | 11        | ាំំ      | 11        | 11        | 11    | 11       | ាំដ      | 11    | ni i       | th.     | ni i     | ni L        | nh h    | ni i       | 11     | ាំំំ        | 11     | 11                             | 11                                                                                                                                           | nini.        | nh h              | ាំដំ       | ជាវិល   | 4   |
| मम         | ជាជាជា<br>ជាជាជា | 대표      |           |          |           |           |       |          |          |       |            |         |          | <u>ni i</u> |         |            |        | ាដដែ<br>ដោដ |        | <u> <u>p</u><u>p</u></u>       |                                                                                                                                              | <u>n</u> î û | ារាំង             | ារាំផ្ត    | ជុំជុំព | 1   |
| LUM<br>LUM |                  |         | 사사        |          |           |           |       |          |          |       |            |         |          |             |         |            |        |             |        |                                |                                                                                                                                              |              |                   |            |         | Â,  |
| 111        | ជិជិជិ           | ធិធិ    | ជាជ       | 10       | ជាជ       | ជាជ       | ធិធិ  | 11       | កើដ      | 11    | កើជ        |         | ការីដ    | កើរជំ       | កើដ     | កើរជ       | 11     | ធិធិ        | 11     | 11                             | 11                                                                                                                                           | 1 L          |                   |            | 111     | 14  |
| 니니         | ជំផុំផុំ         | ារាំជា  | ជាជ       | ជាជ      | ជាជ       | ជាជ       | ជាជ   | ni i     | ណ្ដាំ    |       |            |         |          |             | ណ្ដាំ   |            | ផ្កំផ្ | ផ្កាធិ      | ជាជ    | цü                             | ណ្ដំធំ                                                                                                                                       | ារុំារុំ     | ណ្ណំណ៍            | ក្នុំផ្ទ   | ជាណ     | 1   |
| 101        | LON H            | 실석      | 뒷분        | 교교<br>교교 | 된서        | 뒷분        | 날님    |          |          | La La | La La      |         | 1 h h    |             |         | 214        | 교교     | 실실          | 날님     | 실물                             |                                                                                                                                              |              |                   | 교육         | H LA    | 1   |
| 100        | ជំដំដ            | 11      | ដដ        | 11       | ជាជ       | ជាជ       | 11    | 11       | ជាដ      | 11    | 11         |         | ni i     | 1           | ធាដ     | ni i       | 11     | ជាដ         | 11     | 11                             | 1                                                                                                                                            | 1            |                   | 11         | 221     | 2.4 |
| ជជ         | ជុំជុំជុំ        | ាំជុំ   | ជុំជុំ    | ជុំជុំ   | ជុំជុំ    | ជុំជុំ    | ជាជ   | ni i     | កដ្ដាផ្ទ | ាំធំ  | កដ្        | ារាំដ   | ក្នុំផ្ទ | កដ្         | ាជាំជុំ | ក្នុំផ្ទុំ | ជាជ    | ជាជំ        | ជាជ    | <u><u><u>p</u></u><u>p</u></u> | ាំដំ                                                                                                                                         | ារាំផ្ល      | ាំដំ              | ាំដំ       | ផ្កំណ   | 1   |
| 나다<br>값입   |                  |         | 날님        | 걸쳐       | 날님        | 날님        | 걸실    | <u>A</u> |          |       | 244        |         | <u>A</u> |             |         |            |        | 言語          | 걸쳐     | 날님                             | 니니니                                                                                                                                          |              |                   |            | HAN     | N.  |
| 122        | ជំណំ             | 11      | 11        | 11       | 11        | 11        | 11    | ni i     | ณ์น้     | 11    | 11         | 1       | CAT.     | 1           | A A     | 1          | 1      | 11          | 11     | ាំដ                            | A.                                                                                                                                           | 11           |                   |            | 110     | i.  |
| ជជ         | ជុំជុំជុំ        | ាំជុំ   | ជុំជុ     | ជុំជុំ   | ជុំជុំ    | ជុំជុ     | ជាជុំ | ាំដំ     | ាដ្ឋាជ្  | ាំធំ  |            | ារាំដ   | ារាំផ្   |             | ាជាំជុំ | ាដ្ឋាផ្ទ   |        | ជាជ         | ជុំជុំ | 宣言                             |                                                                                                                                              |              | ាដំដំ             | ាដាំដុំ    | ជុំជុំវ | 1   |
| 記録         | HUH H            |         | 노님        | HH       | ЦH        | 실실        | 24    |          | 0.14     |       | <u>h</u> h |         |          | 014         |         |            | Щų.    |             | Цų     | 실실                             |                                                                                                                                              |              |                   |            | MAG     | 12  |
| 20         |                  | 11      | 급급        | 10       | 급급        | 급급        | 10    | 11       |          | 11    | 11         | 1       |          |             | 11      | 21         | 10     | 11          | 11     | 월집                             |                                                                                                                                              |              |                   |            |         | 4   |
| ជជ         | ជំជុំជុំ         | ជាជ     | ជាជ       | ជាជ      | ជជ        | ជាជ       | ជាជ   | นน       | ណដ       | น่น   | ណដ         | ណដ      |          | ណដ          | ារាំជ   | ាដាំ ដំ    | ជាជ    | ជាជ         | น่น    | ជជ                             | ณ์นี้                                                                                                                                        | ณ์น้         | ณ์นี้             | ណ៍ជំ       | น้ำม้ก  | Ť.  |
| 교고         | 유민유              | 되다      | 되다        | 꼬교       | 되다        | 되다        | 꼬니    |          |          | 걸쳐    |            |         | AA       |             |         | AA         | 되니     | 필요          | 되다     | 필요                             | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | ЩĻ           | <u> <u>A</u>A</u> | <u>n</u> h | मेमा    | 1   |
| 요고<br>고고   | 요 집 집            | 비교      | 날날<br>답답  | 법법       | 법법        | 불물        | 실실    |          |          |       |            |         |          |             |         |            | 불물     | 실실          | 법법     | 불물                             |                                                                                                                                              |              |                   |            | 110     | i,  |

asymmetric unit unit cell 2D array crystal

#### **Group theory**

- A crystallographic space group is the mathematical group of symmetry operations which apply to both the given unit cell and the crystal array
- Finite number of crystal packing arrangments
- There are 230 possible crystallographic space groups in 3D
  65 for proteins and chiral molecules
- 17 plane groups describe all the possible symmetry arrangements in projection images of 2D crystals
- These plane groups are different (but correlate somewhat trivially) to the 17 2D space groups which describe all possible 2D crystal arrangements

#### Rotation

*n*-fold rotational symmetry dictates that rotation about a point by an angle of  $360^{\circ}/n$  generates an image indistinguishable from the original













Square (tetragonal) a = b; γ = 90



Rectangle (rectangular) a ≠ b; γ = 90



Rhombus (hexagonal)  $a = b; \gamma = 120$ 

## Rectangular unit cells are a special case

- 15 of the 17 possible 2D space groups are primitive cells. The remaining 2 are centered cells
  - A primitive cell describes a minimal motif repeate by lattice translations
  - A centered cell contains internal repetition



# Rectangular unit cells are a special case

- 15 of the 17 possible 2D space groups are primitive cells. The remaining 2 are centered cells
  - A primitive cell describes a minimal motif repeate by lattice translations
  - A centered cell contains internal repetition
  - Either describes the crystal correctly, but the centered cell "buys you more symmetry"





Behlau et al. J Mol Biol (2001) 305:71-77



# <text>

# The 17 2D plane groups

Unit cell geometry

rhomboid (oblique)

rectangle

square

rhombus (hexagonal)

# Plane group notation

Hermann-Mauguin style

- Begins with either **p** or **c**, for a **p**rimitive cell or a face-**c**entered cell
- This is followed by a digit, *n*, indicating the highest order of rotational symmetry: 1-fold (none), 2-fold, 3-fold, 4-fold, or 6-fold
- The next two symbols indicate symmetries relative to the "main" translation axis of the pattern; if there is a mirror perpendicular to a translation axis this is the main one (or if there are two, one of them).
  - The symbols are either m, g, or 1, for mirror, glide reflection, or none.
  - The axis of the mirror or glide reflection is perpendicular to the main axis for the first letter...
  - ...and either parallel or tilted  $180^{\circ}/n$  (when n > 2) for the second letter.





# **Group theory**

- A crystallographic space group is the mathematical group of symmetry operations which apply to both the given unit cell and the crystal array
- There are 230 possible crystallographic space groups in 3D
  65 for proteins and chiral molecules
- 17 plane groups describe all the possible symmetry arrangements in projection images of 2D crystals
- These plane groups are different (but correlate somewhat trivially) to the 17 2D space groups which describe all possible 2D crystal arrangements

# Symmetry operations in 2D crystals

# In-plane center of rotation

- A rotation axis centered in the *xz* or *yz* plane
- A 2-fold in plane center of rotation is equivalent to a mirror in 2D projection space



mirror plane

2-fold center of rotation



| Plane group | Unit cell geometry  | Highest order | Point group | Glide/screw | 2d space group                  |
|-------------|---------------------|---------------|-------------|-------------|---------------------------------|
| p1          | rhomboid (oblique)  | 1             | 1           | Ν           | P1                              |
| p2          | rhomboid (oblique)  | 2             | 2           | Ν           | P2                              |
| pm          | rectangle           | 1             | m           | Ν           | P12                             |
| pg          | rectangle           | 1             | m           | Y           | P12 <sub>1</sub>                |
| cm          | rectangle           | 1             | m           | Ν           | C12                             |
| p2mm        | rectangle           | 2             | 2mm         | Ν           | P222                            |
| p2mg        | rectangle           | 2             | 2mm         | Y           | P222 <sub>1</sub>               |
| p2gg        | rectangle           | 2             | 2mm         | Y           | P22 <sub>1</sub> 2 <sub>1</sub> |
| c2mm        | rectangle           | 2             | 2mm         | Ν           | C222                            |
| p4          | square              | 4             | 4           | Ν           | P4                              |
| p4mm        | square              | 4             | 4mm         | Ν           | P422                            |
| p4gm        | square              | 4             | 4mm         | Y           | P42 <sub>1</sub> 2              |
| р3          | rhombus (hexagonal) | 3             | 3           | Ν           | P3                              |
| p3m1        | rhombus (hexagonal) | 3             | 3m          | Ν           | P321                            |
| p31m        | rhombus (hexagonal) | 3             | 3m          | Ν           | P312                            |
| p6          | rhombus (hexagonal) | 6             | 6           | Ν           | P6                              |
| p6mm        | rhombus (hexagonal) | 6             | 6mm         | Ν           | P622                            |

# Real space example – RC47 crystal

# p2gg (P22<sub>1</sub>2<sub>1</sub>)

- 2 fold rotational symmetry
- 2 x glide axes



– – – glide axis



# Real space example – RC47 crystal



p<mark>2</mark>gg

# Real space example – RC47 crystal



# Real space example – RC47 crystal



p2g<mark>g</mark>

## The centrosymmetric condition

- Symmetry in real space is preserved in reciprocal space
- All space groups with 2-fold symmetry must have phases universally equal to 0 or 180 degrees
- These are the only phases which satisfy the requirement that symmetry is conserved in Fourier space



## Systematic absences

- Symmetry forbidden reflections result when a crystal has periodicity over less than one unit cell
- Axial/zonal systematic absences arise from glides/screws
  > Loss of odd reflections
- Integral systematic absences arise when a centered cell is chosen
  - > Twice as many reflections





# CHIP28 (Aqp1) in real space

# p4gm (P42<sub>1</sub>2)

- 4 fold rotational symmetry
- 1 pair of glide axes
- 1 pair of mirror lines
  - 4-fold center of rotation
  - – glide axis
  - → mirror line



#### Mitra et al. Biochem (1994) 33:12735-40

| SPACEGR  |        | Phase rea | sid (No) | Phase rea | sid(No) | ox     | оч     |  |
|----------|--------|-----------|----------|-----------|---------|--------|--------|--|
| 51110201 |        | v.other s | • •      | v.theore  | • •     | 0.11   | 01     |  |
|          | _      | (90 rand  | -        | (45 rai   |         |        |        |  |
| 1        |        | 29.8      | 176      | 22.0      | 176     |        |        |  |
|          | p2     | 62.6      | 88       | 31.3      |         | EE 7   | -17.6  |  |
|          |        | 76.7      | 38       | 31.3      | 12      | -85.6  |        |  |
| <b>_</b> | p12_b  |           |          |           |         |        |        |  |
|          | p12_a  | 64.8      | 37       | 28.1      | 10      | -170.0 |        |  |
|          | p121_b | 66.6      | 38       | 35.1      | 12      |        | -145.0 |  |
|          | p121_a | 58.9      | 37       | 32.2      | 10      |        | -40.6  |  |
|          | c12_b  | 76.7      | 38       | 32.7      | 12      | -85.6  |        |  |
|          | c12_a  | 64.8      | 37       | 28.1      | 10      | -170.0 |        |  |
| e        | p222   | 72.0      | 163      | 31.2      | 176     | 122.4  | 160.9  |  |
| Ъ        | p2221b | 72.4      | 163      | 38.0      | 176     | 5.3    | 139.3  |  |
| 7a       | p2221a | 71.4      | 163      | 38.0      | 176     | 89.2   | 140.5  |  |
| 8        | p22121 | 75.5      | 163      | 38.8      | 176     | -180.4 | 149.7  |  |
| 8<br>2   | c222   | 72.0      | 163      | 31.2      | 176     | 122.4  | 160.9  |  |
| 10       | p4     | 65.2      | 172      | 31.6      | 176     | -58.7  | 161.0  |  |
| 11       | p422   | 72.6      | 369      | 31.8      | 176     | -58.9  | 160.6  |  |
| 12       | p4212  | 73.2      | 369      | 31.9      | 176     | -58.9  | -19.6  |  |
| 13       | p3     | 62.2      | 118      |           |         | -158.7 | -81.0  |  |
| 14       | p312   | 72.3      | 298      | 23.5      | 20      | -154.9 | -69.8  |  |
| 15       | p321   | 70.0      | 305      | 28.5      | 34      | 154.9  | -165.9 |  |
|          | p6     | 72.0      | 324      | 31.8      | 176     | 120.9  | 161.0  |  |
| 17       | p622   | 73.5      | 691      | 39.5      | 176     | -39.0  | -170.8 |  |
|          |        |           |          | ,         | -       |        |        |  |

# Searching for symmetry – ALLSPACE & 2DX

# Why 21 space groups?

# **Other considerations**

- When might symmetry fall apart?
  - Plane group symmetry rules only hold for untilted specimens
  - Astigmatism causes a non-uniform effect of the CTF on symmetry related spots, potentially making symmetry evaluation unreliable
  - Symmetry rules only hold when data are shifted to phase origin
  - Stain exclusion patterns can cause over-estimation of symmetry
  - Low resolution data may also over-estimate symmetry
- Always check for the satisfaction of sub-symmetries to help
- ALLSPACE does not check for systematic absences
- Check that symmetry rules continue to hold when merging and moving up in resolution

| Electron<br>Crystallography                                                           | ther Reading<br>Available online at www.sciencedirect.com<br>ScienceDirect<br>Journal of Structural Biology 160 (2007) 332-343                                                                                                                                                                                               | Journal of<br>Structural<br>Biology<br>www.elsevier.com/locatelyjisbi |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| ol                                                                                    | netry: A guide to its application in 2D electron of<br>Michael J. Landsberg *, Ben Hankamer *<br>mute for Molecular Bioscience, Queensland Biosciences, Precines, The University of Queensland, Brishar<br>Received 1 May 2007; received in revised form 19 June 2007; accepted 6 July 2007<br>Available online 17 July 2007 |                                                                       |
| Robert M. Oslover<br>Kennech Downing<br>Ontvid DeRosier<br>Waik Chen<br>Joseban Frank | also: V. Unger <i>et al.</i> "Structure dete<br>electron micrographs of 2d crystals"                                                                                                                                                                                                                                         | rmination from                                                        |
| OF QUEENSLAND                                                                         | stitute for Molecular Bioscienc                                                                                                                                                                                                                                                                                              | a <b>ämmrf</b>                                                        |