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Abstract

The use of a compact support constraint along the beam direction is considered as a solution to the phase problem for diffraction

by two-dimensional protein crystals. Specifically we apply the iterative Gerchberg–Saxton–Fienup algorithm to simulated three-

dimensional transmission electron diffraction data from monolayer organic crystals. We find that oversampling along the reciprocal-

lattice rods (relrods) normal to the monolayer alone does not solve the phase problem in this geometry in general. However, based

on simulations for a crystalline protein monolayer (lysozyme), we find that convergence is obtained in three dimensions if phases are

supplied from a few high resolution electron microscope images recorded at small tilts to the beam direction. In the absence of noise,

amplitude-weighted phase residuals of around 5�, and a cross-correlation coefficient of 0.96 between the true and estimated potential

are obtained if phases are included from images at tilts of up to 15�. The performance is almost as good in the presence of noise at a

level that is comparable to that commonly observed in electron crystallography of proteins. The method should greatly reduce the

time and labor needed for data acquisition and analysis in cryo-electron microscopy of organic thin crystals by avoiding the need to

record images at high tilt angles.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In recent work the idea has become widely accepted

that the intensity scattered by a non-periodic object, if

sampled finely enough, contains enough information to

solve the phase problem. Several methods for extracting

this information have been proposed involving the so-
lution of the Fourier equations relating real and re-

ciprocal space. The most successful of these is the

iterative Gerchberg–Saxton–Fienup hybrid input–out-

put (HIO) algorithm, referred to here as HIO (Fienup,

1982). The algorithm iterates between real and re-

ciprocal space, imposing known information (con-

straints) in each space, until convergence is reached.

Feedback is also used, making convergence more rapid
and robust. For weakly scattering (real) objects the
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Fourier modulus, sign and compact support constraints

have been found sufficient for convergence in simula-

tions and experiments with X-rays (He et al., 2003; Miao

et al., 1999), laser-light, and coherent electrons in TEM

(Weierstall et al., 2001), where the first atomic-resolu-

tion images have recently been obtained from a nano-

tube, using diffracted intensities (Zuo et al., 2003).
Simulations have also been reported for neutron imag-

ing (Spence et al., 2001). The sign constraint here refers

to the known sign of the scattering ‘‘potential’’ (charge-

density for X-rays, electrostatic potential for electron

scattering). Compact support refers to the requirement

that the boundary of the object be approximately

known. For ‘‘complex’’ objects (such as multiply-scat-

tering samples in electron diffraction) inversion to the
exit-face wavefunction is still possible, but requires very

precise knowledge of the object boundary (support), and

is facilitated if the support is disjoint (Fienup, 1987) or if

the unit modulus constraint can be used for strong phase
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objects (Spence et al., 2002). Questions of the uniqueness
of solutions, convergence, error metrics, relationship to

steepest-descent optimizers (Fienup, 1982) and an illu-

minating analysis using the methods of projections onto

convex sets are all considered elsewhere (Bauschke et al.,

2002; Elser, 2003; Stark, 1987).

The Shannon sampling theorem shows that the con-

tinuous distribution of diffracted intensity from a single

molecule of width W can be obtained at any angle by
interpolation from sampled values of the intensity if the

samples occur at an angular spacing proportional to

1/(2W) (in one dimension). This spacing is the reciprocal

of the width 2W of the Fourier Transform of the dif-

fracted intensity, which is the autocorrelation function

of the molecule, and so plays the role of the ‘‘bandlimit’’

in Shannon�s theory. All the information contained in

the scattered intensity (usually enough to solve the phase
problem) can only be extracted if this Shannon sampling

is used (Sayre, 1952). Periodic repetition of the molecule

on a lattice with spacing W, however, will generate

Bragg peaks at twice this angular separation, and hence

the Bragg intensities alone (without other a priori as-

sumptions) do not contain enough information to solve

the phase problem. Thus no way has been found to use

the HIO algorithm to solve the phase problem for large
three-dimensional crystals.

Shannon sampling of the diffracted intensity (at in-

tervals of 1/2W) has been referred to as ‘‘oversampling’’

(by a factor of two), and corresponds to Bragg sampling

in the situation in which the molecule is surrounded by a

border of material (such as a water jacket or vacuum)

which has the effect of doubling the unit cell dimensions.

The imposition of ‘‘known’’ zeros in this region in real
space during iterations can be thought of as compen-

sating for the lack of a corresponding amount of phase

information in reciprocal space, since the result makes

the number of Fourier equations just equal to the

number of unknown phases. In this sense, Shannon

sampling is needed to extract all information, including

phases, from the diffracted intensity. The HIO algorithm

is then capable of finding the very large number of ad-
justable parameters (one phase for each diffracted pixel)

given the compact support constraint (known region of

zero charge density surrounding the molecule). The al-

gorithm is tolerant to noise in simulations, however it

has proven difficult to make the isolated, ‘‘real’’ (single

scattering) samples with approximately known support

which are needed for experiments (He et al., 2003).

Several approaches to the problem of estimating the
support of an object from that of its autocorrelation

function have been suggested (Fienup et al., 1982).

In this paper, we point out that for thin, laterally

periodic slabs in the transmission diffraction geometry,

the condition of compact support may be applied in

the non-periodic direction z normal to the slab. We

explore the consequences of this, using simulations,
for the phase problem in electron diffraction and
cryomicroscopy.

It is known that the HIO algorithm fails in general for

three-dimensional crystals (Millane, 1993), fails also in

one dimension (unless the support is disjoint (Stark,

1987)), converges for real finite objects in two dimen-

sions, and converges best in three dimensions (Millane,

1990). The thin crystalline geometry we discuss here,

periodic in two directions and non-periodic in the third,
remains to be investigated. In surface science, a one-

sided compact support condition has been applied nor-

mal to the termination of bulk material together with

direct methods (Marks, 1999). We are especially inter-

ested in determining the minimum number of known

phases which must be supplied from electron micro-

scope images, perhaps at limited resolution, to phase the

entire three-dimensional reciprocal space when the
compact support condition can be applied along z. Since
knowledge of phase is a convex constraint (Lindaas

et al., 1998), these images greatly improve convergence.

In this way, by requiring fewer images, the time and

effort devoted to data collection and analysis in electron

crystallography might be greatly reduced.
2. The HIO algorithm

We briefly summarize here the HIO algorithm (Fie-

nup, 1982), which we will apply to three-dimensional

diffraction data sets using three-dimensional Fourier it-

erations. For a monolayer potential V ðx; y; zÞ, we as-

sume that jFTðV ðx; y; zÞÞj has been measured, and that

the support Sðx; y; zÞ is known. Sðx; y; zÞ is the region
(slab) around z ¼ 0, where V is known to be non-zero.

The iterations start with an initial estimate ~GG1ðu; v;wÞ ¼
jFTðV ðx; y; zÞÞj expðih1ðu; v;wÞÞ of the diffracted intensi-

ties. The zero-order Fourier coefficient or mean inner

potential would need to be included in order to guar-

antee a known sign for the potential. However, we were

interested to find here, that the algorithm works well

without applying any sign constraint - evidently the
provision of some known phases (a powerful convex

constraint) compensates for the lack of a sign constraint

in this work. Thus the mean potential was taken to be

zero. Initially the phases h1ðu; v;wÞ are random numbers

in the range 0–2p. In the centrosymmetric case, phases

are either 0 or p, so that the initial h1ðu; v;wÞ correspond
to an array of random + and ) signs. The iterative HIO

algorithm used here consists of the following steps (with
subscript k labeling quantities at the kth iteration):

1. Inverse Fourier transform ~GGkðu; v;wÞ to obtain an es-

timate of the potential ~ggkðx; y; zÞ.
2. Apply constraint to potential; the potential has to be

real and positive: ~ggkðx; y; zÞ ¼ j~ggkðx; y; zÞj. This condi-
tion was not applied in this work.

3. Define gkþ1ðx; y; zÞ as
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gkþ1ðx;y;zÞ¼
~ggkðx;y;zÞ if ðx;y;zÞ 2 Sðx;y;zÞ;

gkðx;y;zÞ�b~ggkðx;y;zÞ if ðx;y;zÞ 62 Sðx;y;zÞ:

�

This constitutes the HIO version of the algorithm. b is

a feedback constant chosen between 0.5 and 1. In the

error-reduction (ER) version of the algorithm (the

Gerchberg–Saxton algorithm) this step is replaced by

gkþ1ðx; y; zÞ ¼
~ggkðx; y; zÞ if ðx; y; zÞ 2 Sðx; y; zÞ;

0 if ðx; y; zÞ 62 Sðx; y; zÞ:

�

4. Fourier transform gkþ1ðx; y; zÞ to obtain Gkþ1ðu; v;wÞ.
5. Define new Fourier domain function ~GGkþ1ðu; v;wÞ us-

ing the known Fourier modulus jFTðV ðx; y; zÞÞj with
the computed phase: ~GGkþ1ðu; v;wÞ ¼ jFTðV ðx; y; zÞÞj
expðihkþ1ðu; v;wÞÞ.

6. Apply constraint to structure factors phases, which
must be 0 or p, by replacing expðihkþ1ðu; v;wÞÞ with

cosðhkþ1ðu; v;wÞÞ=j cosðhkþ1ðu; v;wÞÞj. For acentric

structures (such as the protein considered later) this

step is omitted.

7. Replace any phases with values known from electron

microscope images.

Go to step 1, with k replaced by (k þ 1).

To monitor the progress of the algorithm, the im-
age space error metric ek is calculated during each

iteration:

ek ¼

P
ðx;yÞ62S ~ggkðx; y; zÞ

��� ���2P
ðx;yÞ ~ggkðx; y; zÞ
��� ���2

0
B@

1
CA

1=2

: ð1Þ

Here ek is the amount by which the reconstructed po-
tential violates the image-space constraints. It measures

the deviation from the current estimate of the potential

from zero outside the slab. (It has been shown that the

likelihood of finding more that one solution of the

correct sign which meets the condition ek ¼ 0, and

possesses the correct Fourier magnitudes, is extremely

small (Barakat and Newsam, 1984)).

The iterations used in this work consist of 25 HIO
sequences followed by 10 error-reduction sequences, a

combination found most effective during computational

trials. The value of ek is only given accurately during

error-reduction, whereas only during HIO iterations

does feedback allow the algorithm to ‘‘climb out’’ of

local minima.
Fig. 1. Arrangement of molecules in the cubic unit cell of a tetracy-

anoethelene (TCNE) crystal. Additional molecules are generated by a

center of inversion at (1/4,1/4,1/4). The center of inversion for the

molecule lies at the midpoint of the cell axes.
3. Small molecules at atomic resolution: tetracyanoethelene

In order to establish the method using a recognizable

atomic-resolution potential defined by few parameters,

we first present the results of simulations for tetracy-

anoethelene (TCNE). Unlike the protein treated later, a

glance at the retrieved three-dimensional potential gives

an immediate impression of success or failure, the
calculations are fast, and the results allow us to compare
performance for centrosymmetric and noncentrosym-

metric (acentric) molecules. Fig. 1 shows the structure of

the TCNE crystalline monolayer used in the simula-

tions. TCNE, C6N4, is body-centered cubic, with

spacegroup Im3 and cell constant 9.736�AA (Belemlilga

et al., 1999). The three inequivalent molecules per cell

are shown in Fig. 1. A center of symmetry at (1/4,1/4,1/

4) generates three more molecules that are arranged in
a mutually perpendicular fashion. Using a Gaussian

expansion for the relevant relativistic Hartree–Fock

electron scattering factors (Doyle and Turner, 1968) we

have simulated the kinematic diffraction pattern of

amplitudes for a single layer of these molecules. We

assume that the moduli of the Fourier coefficients of the

electrostatic potential can be extracted from experi-

mental diffraction patterns after correction for effects
due to film bending, curvature of the Ewald sphere and

other artifacts. A temperature factor expð�B s2Þ with

B ¼ 0:3 �AA
2
and s ¼ 1=dhkl was assumed. Since the mol-

ecule is centrosymmetric, the structure factors are real,

and the phase problem consists of a sign ambiguity.

Application of the HIO algorithm to solve this structure

requires ‘‘oversampling’’ of the data along the relrods

normal to the film, which are separated laterally by
multiples of the Bragg angle. For a thin film of thickness

t, the maximum sampling interval along the rod at the

Shannon rate is Ds ¼ 1=ð2tÞ, where Ds is a reciprocal

lattice increment along the rod. (The sampling actually

used in these simulations is discussed further below.)

To summarize, the magnitudes of the Fourier coeffi-

cients of potential for a TCNE monolayer were used as

input to the HIO algorithm with the addition of a
compact support condition normal to the slab. In

practice a computational supercell was used whose



Fig. 2. Isopotential view of the electrostatic potential of TCNE as

reconstructed by HIO from simulated diffracted intensities (to 0.35�AA)

combined with 3 images (to 0.35�AA). The computational supercell is

shown in green, the size in the z direction is three times the thickness of

the monolayer, providing for the compact support. The size in the x
and y direction is the size of one unit cell (0.97 nm). Seventy iterations

were needed for the 30� 30� 90 voxel data set.

Fig. 3. A section of the unit cell of lysozyme normal to z, comparing model

HIO, with noise-free amplitudes and image phases up to 15� tilt angles; 105
factors corresponding to R ¼ 25% and using image phases up to 15� tilts.
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dimensions were equal to the crystal monolayer unit cell
dimension laterally, but three times this dimension

measured along z, normal to the monolayer. This cor-

responds to an oversampling factor N ¼ 3, which then

fixes the points at which samples are taken along the

relrods. While oversampling by 2 satisfies the Shannon

requirement, it has been suggested in X-ray HIO work

(Miao et al., 1999) that better convergence is obtained at

somewhat higher factors.
If no additional phases were provided a priori, it was

found that the HIO algorithm with compact support

along z did not converge. We then assumed that phases

can be provided from high resolution images recorded in

various orientations. The algorithm was then found to

converge after about 100 iterations (in the sense that a

small value of ek is soon obtained and a recognizable

charge-density obtained, as in Fig. 2) if three images
were used to provide known phases. These were chosen

on the plane in reciprocal space normal to c passing

through the origin, together with planes tilted at 45�
about the x and y axis. Fig. 2 shows an isopotential view

of a contour of the electrostatic potential for the TCNE

molecule. This was reconstructed after 70 iterations of

the 30� 30� 90 voxel data set with the feedback pa-

rameter b ¼ 0:8. The simulated diffracted intensities (to
0.35�AA) were combined with phase data from a simu-

lated image, also to 0.35�AA resolution. The support mask

sets the object function to zero for slices equal to or less

than 28 and greater than or equal to 62, corresponding

to the vacuum before and after the sample. The algo-

rithm converges to values of ej of about 0.047 after only

70 iterations, independent of the starting phases. (In

terms of the error metrics defined in the next section,
after 105 iterations we find a correlation coefficient

between the estimated and true charge density of

CC¼ 0.995, ej ¼ 0:047). These calculations do not

simulate the effects of noise.
and retreived structures. Left: The model. Center: Reconstructed using

iterations. Right: Similar reconstruction, with noise added to structure
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4. Proteins at 3.0�AA resolution: lysozyme

More relevant to cryomicroscopy are applications of

the method to proteins at the lowest resolution which

allows identification of amino acids. We therefore con-

sider the problem of phasing a three-dimensional dif-

fraction data set from a crystalline monolayer of

lysozyme. Atomic coordinates were obtained from the

Protein Data Bank (ID 5LYZ (Diamond, 1974)). The
unit cell is tetragonal, P 43 21 2 (#96), with cell con-

stants a ¼ 79:1 �AA, b ¼ 79:1 �AA, c ¼ 37:9 �AA. Symmetry-

related atoms were generated from the asymmetric unit

to fill the unit cell (total of 8008 atoms), which was then

padded to three times the initial size in the c direction to
provide three times oversampling. Structure factors for

this expanded cell were calculated with the CCP4

routine SFALL (Collaborative Computing project

Number 4, 1994) using the electron scattering factor li-

brary. Structure-factor phases were randomized for this

tripled structure, and the resulting intensities supplied to

the HIO algorithm, which again performs three-dimen-

sional Fourier iterations. A support mask was applied,
set to unity within the monolayer slab and zero else-

where. At 3�AA resolution these (tripled) cell dimensions

require a matrix of dimension 54� 54� 78. Running in

Matlab 5.2 on a Mac G4 laptop, the program takes

about one second per iteration, using FFT routines (not

powers of two). Convergence could again only be ob-

tained if known phases were supplied on certain planes
Fig. 6. Correlation coefficient CC (upper curve) and rms error (lower curve

space, in degrees, within which known phases have been supplied to the alg
in reciprocal space from images, but the algorithm is
remarkably tolerant to noise in the amplitudes. Some

results at 3�AA resolution are shown in Fig. 3.

Evaluation of the performance of the algorithm re-

quires a statistical measure of the accuracy of the

phasing of about 53 000 reflections. For these simula-

tions, unlike experiment, the true (model) potential is

known. We therefore evaluate several measures of con-

vergence, and plot these under different conditions of
noise, and of the number of images (and their orienta-

tions) used to assist the phasing.

The correlation coefficient between the true potential

VtðrÞ and estimated potential VeðrÞ is equal to the value

of the normalized cross-correlation function at the ori-

gin, or (Read, 1986)

CC ¼
R
V VtðrÞVeðrÞdrR

V VtðrÞ
2
dr
R
V VeðrÞ

2
dr

h i1=2
¼
P

h F t
h

�� �� F e
h

�� �� cos /t
h � /e

h

� �
P

h F t
hj j2
P

h F e
hj j2

h i1=2
¼
P

h Fhj j2 cos /t
h � /e

h

� �
P

h Fhj j2
: ð2Þ

Here Fh are the measured structure factors used in the
HIO, which adjusts only phases. The value of CC lies in

the range CC¼)1 (anticorrelated) to CC¼ 1 (perfect

agreement). We find CC values around 0.2 for an
) from HIO algorithm plotted against the angular range of reciprocal

orithm.
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estimate based on the correct structure factor magni-
tudes and randomly selected phases, with one origin-

fixing image. The value of CC depends on the average

value of the potential, proportional to F ð000Þ. (The

addition of a large constant to two compact functions

makes them more similar.) We therefore set F ð000Þ ¼ 0

when evaluating CC and the following phase residuals

to avoid this effect and to increase the sensitivity of CC

to differences. Because we set the zero-order Fourier
coefficent F ð000Þ to zero the real-space potential fluc-

tuates between positive and negative signs, and a sign

constraint is therefore not used. The algorithm drives ej
(the total amount of potential outside the support) to-

ward zero in order to find a solution. Setting F ð000Þ ¼ 0

sets a scale for ej (and makes CC independent of

F ð000Þ), so that we can then use small values of ej for an
unknown sample as a predictor of large CC values. For
two-dimensional image-processing applications of HIO

with compact support it has been established that the

variation of ej with CC is monotonic (Fienup, 1997).

A useful measure of performance is the amplitude

weighted rms phase error (Frank, 1996).

hjhDhijiF ¼
P

h /t
h � /e

h

� �2
F t
h

�� ��þ F e
h

�� ��� �P
h F t

hj j þ F e
hj jð Þ

 !1=2

¼ PRF;

ð3Þ
where /t

i are the N true structure factor phases from the

model and /e
ı are those estimated by the HIO algorithm,

and the sums are taken over only the part of reciprocal

space where the initial phases are unknown. In our case

the structure factor amplitudes jF t
h j and jF e

h j remain

equal during the HIO analysis.

A more informative measure is the resolution-de-

pendent Fourier shell correlation (FSC):

FSCðk; k þ DkÞ ¼
Re
P

½k;kþDk� F
tF e�

P
½k;kþDk� F

t 2
P

½k;kþDk� F
e 2

n o1=2
ð4Þ

evaluated in the resolution range from k to k þ Dk.
(Frank, 1996).

Known phases, assumed supplied from electron mi-

crographs, were provided on several planes passing

through the origin of reciprocal space. In practice, one

can expect to obtain a complete set of phases up to some

angular limit from a number of images from crystals
tilted at that angle but randomly oriented within the

specimen plane. When the tilt angle is small, the number

of images required to complete the phase set is also

small. For example, with our lysozyme unit cell, all

phases up to a 15� tilt could be obtained from images of

about 15 crystals uniformly spaced in azimuth with re-

spect to the tilt axis. Image resolution is assumed to be

3�AA, as for the diffraction patterns. In summary, in the
absence of noise, a correlation coefficient of about 0.96

with PRF¼ 4.9� is obtained after about 100 iterations
when phases up to 30� tilts are included. Convergence is
essentially complete after 25 iterations, and CC and

PRF improve little with further iterations. Results are

almost as good with phases up to only 15� tilts. Fig. 3

shows a section of the density map obtained after 105

iterations with starting phases provided from images at

tilt angles up to 15�. The map is indistinguishable from

the initial model density map. Fig. 4 summarizes our

results, showing CC and the RMS error ej (the only
metric available when analyzing unknown structures) as

a function of iteration number.

The addition of noise to these simulated diffraction

intensities provides a more realistic impression of results

to be expected with real data. In these initial simulations

we make the assumption that the noise follows Poisson

statistics and ignore other sources of noise and error in

the data. The standard deviation in the modulus of a
structure factor rðjFgjÞ is then given by the square root

of the number of (simulated) electrons that contribute to

the measurement of jFgj. All structure factor amplitudes

were scaled by the same factor to convert to electrons

for each spot, and then each amplitude was replaced by

a value taken from a normal distribution with the ap-

propriate mean value for that diffraction spot. The scale

factor was adjusted to obtain an R-factor, relating the
noisy to noise-free amplitudes, that corresponds to val-

ues commonly found in experimental diffraction from

proteins. As the noise level is increased, the number of

iterations needed to reach a given value of the conver-

gence parameter ej increases. With sufficiently high

noise, the algorithm stagnates with an unchanging value

of ej greater than about 0.1. With a noise level that

produces an R-factor on amplitudes of 25%, the values
of CC and PRF were only slightly worse than in the

noise-free case, but convergence was about as fast.

The final density map, as shown in Fig. 3, differs from

the map in the noise-free case in merely minor ways that

would not have any effect on its interpretation. (Here

R ¼
P

jFt � Fnj=
P

Ft, with Ft and Fn the positive square
root of the true and noisy intensities).

Fig. 4 also shows the effect of noise; the variation of
CC and ek with iteration number is given for the two

cases where starting phases are supplied at tilt angles up

to 15� and 30�, respectively, with and without noise. An

abrupt drop in the ej curve occurs when the program

changes from HIO to Error Reduction mode at iteration

number 25, where 10 Error Reduction iterations are

performed causing the error to fall significantly. When

the HIO iterations start again there is generally a rapid
increase in ej to a plateau, along with a drop in CC.

From Fig. 4 we see that ej falls smoothly with the phase

residuals as CC increases. Typically, CC rises from

about 0.2 (random phases, correct structure factor

magnitudes, some images) to 0.8 in the first few itera-

tions, while ej falls after a dozen iterations to values of

less than 0.1. These limited computation trials therefore



Fig. 4. Cross-correlation coefficient CC (upper curves) measuring agreement between model lysozyme potential and the HIO estimate as a function of

iteration number. The error ek is also shown (lower curves). Calculations include starting phases as would be obtained from images at tilt angles up to

15 or 30�, with or without noise as shown in the key.
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suggest that CC is again monotonic with ej for our thin

crystal geometry.

Fig. 5 shows the FSC for the four cases after 1, 35,
105, and 315 iterations. There is a slight falloff in the

FSC at the higher resolution range, but even after the

first series of HIO and ER iterations the FSC is already

above the value of 0.5 generally taken to represent a

reliable density map. We also note that the effects of

noise and the limited range of starting phases are more

pronounced at higher resolution.

In order to establish that ej is a useful guide to the
accuracy of reconstruction for unknown structures, it is

also necessary to examine the dependence of ej on the

number of images used. Fig. 6 plots CC and ej against

the angular range within which the phases are known,

corresponding to the maximum tilt angle for the images.

The rapid decline of ej with the angle is presumed to

reflect the strong effect of incorporating even a small set

of phase constraints.
It should be emphasized that the changes in ek and in

the residuals and correlation coefficient due to variations

in the random phasing used at the start of the algorithm

are very small, typically 0.5% of ek. As in any experi-

ment, systematic errors in data collection may result in

convergence to the wrong solution. A full discussion of

the extremely rare ambiguous solutions which may arise

(whose complex Fourier Transforms are factorable),
akin to the enantiomorphs which cannot be distin-

guished by HIO, can be found elsewhere (Seldin and

Fienup, 1990). Equally rare homometric crystal struc-
tures (Buerger, 1959), those with entirely different

structures but the same diffraction patterns, could not be

distinguished by this algorithm.
5. Discussion

In this paper we have shown that repeated applica-
tion of the boundary condition for a thin slab in an it-

erative algorithm can greatly assist solution of the phase

problem for a two-dimensional crystal. Known phases

are then only needed from images recorded over a small

range of tilts in order to phase the entire reciprocal space

volume, thus avoiding the need to record images at high

tilt angles. The main advantage of the method presented

here is the reduction in time and effort needed to com-
plete a three-dimensional structural analysis, since im-

age recording—especially at high tilts—is much more

difficult than the recording of diffraction patterns. Al-

though we need to sample the reciprocal lattice rods

more finely, we only need to include more of the readily

obtainable diffraction data. Thus there is some tradeoff

in increasing the degree of oversampling to improve

convergence versus increasing the number of diffraction



Fig. 5. Fourier shell correlation evaluated for the four simulations in Fig. 4 after 1, 35, 105, and 315 iterations as indicated in (C). In each case,

convergence is essentially complete after 35 iterations when phases up to 30� tiltss are included, and after 105 iterations with only slightly lower FSC

values when phases are only known up to 15�. The addition of noise to the amplitudes causes a slight drop in the correlation. The x-coordinate is

resolution, in �AA�1.
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patterns required. With 2� oversampling, in fact a

similar number of data sets (images plus diffraction

patterns) would be required as for the normal approach
(Grigorieff et al., 1996; Nogales et al., 1998) but these

would be all diffraction.

These simulations have made no use of the known

space group symmetries of the infinite structure, which

may be reduced to those of a slab for a monolayer. For

lysozyme, with (422) point group, the structure factors

are eightfold degenerate, in addition to the screw axis

absences. (For (h00), h ¼ 2n and for (00l), l ¼ 4n are
allowed.) Thus an optimized program might be written

based solely on inequivalent reflections, in which the

voxel number is then more than halved along each axis

in both real and reciprocal space. This would increase

the speed per iteration by a factor of about 20. The

power of the support condition may also be applied

laterally if some pixels of known ‘‘zero’’ potential can be

applied within the unit cell. This method, akin to density
modification or solvent flattening, would rapidly im-

prove convergence.

The sensitivity of the method to errors in the estimate

of the support dimension (the thickness of the sample) has

been investigated. For TCNE, support width variations

of several voxels were introduced until convergence was
lost. We find that errors of up to 1.6�AA or 15% of the total

thickness estimate can easily be tolerated without much

effect on convergence, however this tolerance will depend
on the noise in the data and use of the sign constraint.

This parameter may also be refined during iterations, as

in the recently developed ‘‘shrink-wrap’’ HIO algorithm

for isolated objects, in which a support estimate based on

the autocorrelation function is continuously improved

during iterations (Marchesini et al., 2003).

Real experimental diffraction data includes both

background and detector noise, which can seriously
degrade the quality of weak reflections. To obtain an

impression of this effect, the lysozyme simulations with 9

images (0, �20 and �30� tilts) were run with increased

noise on weak reflections—those less than 5% of the

maximum were subject to three times the standard de-

viation of the others. With R ¼ 18%, CC was found to

decrease from 0.95 to 0.90 as a result, suggesting rea-

sonable tolerance to this effect.
Errors in the phases obtained from images have also

been investigated. If these are uniformly distributed over

an interval of 60� (� 30�) or more, the algorithm fails to

converge if 9 images are used up to 30� tilt. With noise

on structure factor magnitudes corresponding to

R ¼ 18%, the introduction of image phase errors
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uniformly distributed over 45� causes a decrease in the
nine-image case from CC¼ 0.95 to 0.93. There is a

dramatic improvement in performance once the phase

error becomes less than about 30� (� 15�). Experimental

errors in phase determination from images are smaller

than these limits at low resolution, but comparable at

high resolution, suggesting that these conditions may be

demanding for image phasing at high resolution—more

images and a tighter support may help.
These reconstructions take no account of the ‘‘miss-

ing cone’’ of diffraction intensities present in experi-

mental data, which generate an anisotropic point spread

function in real space. Experience with the HIO algo-

rithm in soft X-ray diffraction (He et al., 2003), where

missing data arises from use of a beam-stop, shows that

this can be dealt with by floating numerical values

within the missing region (i.e. treating them as adjust-
able parameters). Setting aside any effort to fill in the

missing cone, the anisotropic point spread function

caused by the missing cone will be identical whether the

phases are obtained by direct imaging or by diffraction

imaging. Whether the degraded resolution in the z-di-
mension will interfere with setting a sufficiently accurate

boundary for the compact support, such that diffraction

phasing is successful, remains still to be investigated.
The domain of convergence for our approach has not

been fully explored in this paper. The relationship be-

tween ej, CC and the phase residuals might also be more

fully explored for different structures and noise condi-

tions. A modest ‘‘phase extension’’ effect was found in

the simulation for tetracyanoethelyne, but the use of

HIO to improve the resolution of images using higher-

resolution diffraction data has not been fully explored
here. For acentric thin crystals such as lysozyme, sim-

ulations showed that little can be gained—the 3�AA dif-

fraction data could be phased using a set of images

limited to 4�AA resolution, however CC fell to 0.90 and

the algorithm stagnates at much lower resolution. It

seems reasonable to expect that the convergence condi-

tions should not depend on the particular protein,

however this remains to be shown.
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