Electron Crystallography Workshop Basel, August 2008

Richard Henderson

Tilt pair validation, B-factors, charging and movement

Rosenthal & Henderson, (2003) - three main points

- More realistic (less conservative) resolution criterion (FSC = 0.14) derived in Appendix with Tony Crowther
- Sharpening map and f.o.m. weighting EM-Bfactor (Fernandez et al, JSB 2008)
- Tilt pair validation of orientation angle determination not yet very popular

• Also, tomography resolution limit of 20 Å

Application of Rosenthal & Henderson tilt pair validation approach (9/112 citations up to August 2010)

- Pyruvate dehydrogenase : R & H (2003) JMB <u>333</u>, 721-42
- *Neurospora* P-type ATPase : Rhee et al (2002) EMBO J. <u>21</u>, 3582-89
- Bovine ATPase : Rubinstein et al (2003) EMBO J. <u>22</u>, 6182-92
- Chicken anaemia virus : Crowther et al (2003) J.Virol. 77, 13036-41
- HepB surface antigen : Gilbert et al (2005) PNAS <u>102</u>, 14783-88
- Hsp104, yeast AAA+ ATPase : Wendler et al (2007) Cell <u>31</u>, 1366-77
- Yeast ATPase : Lau et al (2008) JMB <u>382</u>, 1256-64
- V-type ATPase, *T.thermophilus* : Lau & Rubinstein (2010) PNAS <u>107</u>, 1367-72
- DNA-dependent PKase : Williams et al (2008) Structure <u>16</u>, 468-77

Conclusion - value of tilt pairs

- Works really well for big particles (20MDa); because the orientation determination is so accurate, it provides another piece of information about the magnitude of beam-induced specimen motion for particles in ice
- Works quite well for medium sized particles, but orientation determination has larger error bars (+/- 2-3°)
- For particles less than 1MDa, the success rate for orientation determination becomes less. More work is needed

Radiation damage in structural biology

- Three-dimensional crystals (X-ray) contain ~10¹⁰ molecules
- Two-dimensional crystals (EM) contain ~10⁴ molecules
- Single particles contain 1 or a small number of copies
- Radiation damage unfortunately makes it impossible to determine the structure, except at > 2-4 nm resolution, without some averaging
- Current challenge is to understand how much averaging is necessary in theory and to try to get close to this in practice

This translates into a B-factor due to radiation damage ٠ of $B = 90 Å^2$ at 98K, or $B = 70 Å^2$ at 4K

Type of molecule	Approx. M.W. (Daltons)	D (Å)	N _c , number of carbon atom equivalents	N ₅ , number of unique diffraction spots to resolution of d = 3Å in projection	f, fraction of electrons elastically scattered out to 3Å resolution	STORSS IO	<u>≤Fons</u> ≥ Fo	Phase contrast = total image fractional contrast = signal	Fractional noise level in pixel of dimension $\left(\frac{d}{2}\right)^2 =$ 1.5Å x 1.5Å	Can single molecule be detected? How many times > noise	Multiple of sigms expected within unit cell at random	Multiple of sigma expected within entire volume of 5 parameter space at random	Can single molecule alignment be carried out in practice?	Minimum number of images needed for structure with average Fourier component to be >3 σ in projection	Total number of images in 3D x [22] De Rosier & Klug (1967
large virus	300M	900	25,000,000	141,371	0.0520	0.184x10 ⁻⁵	0.429x10-3	0.322	0.30	644	5.2	8.5	yes	13	12600
small virus	UM	300	936,000	15,707	0.0173	0.552x10 ⁻⁶	0.743x10 ⁻³	0.186	0.30	124	4.8	7.7	yes	40	12600
nbosome	3.3M	200	277,000	6,981	0.0115	0.827x10 ⁻⁶	0.910x10 ⁻³	0.152	0.30	68	4.7	7.5	yes	60	12600
	1.4M	150	117,000	3,926	0.0087	1.103x10 ⁻⁶	1.050x10-3	0.132	0.30	44	4.6	73	yes	80	12600
multimeric enzyme	420K	100	35,000	1,745	0.0058	1.654x10 ⁻⁶	1.286x10 ⁻³	0.107	0.30	24	4.4	7.1	possibly	120	12600
	1808	75	14,600	981	0.0043	2.206x10 ⁻⁶	1.485x10 ⁻³	0.093	0.30	16	4.2	6.8	possibly	160	12600
	52K	50	4,330	436	0.0029	3.309x10 ⁻⁶	1.819x10 ⁻³	0.076	0,30	8.4	4.1	6.7	possibly	240	12600
small protein	18K	35	1,500	213	0.0020	4.727x10 ⁻⁶	2.174x10 ⁻³	0.064	030	4.9	3.9	6,3	no	345	12600
very small protein	7K.	25	540	109	0.00144	6.618x10 ⁻⁶	2.572x10 ⁻³	0.054	0.30	3.0	3,5	5.9	no	480	12600
equation	(1)		(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(13)	(16)	(17)	(10)	(11)
relation to D	0.418 x D ³	D	0.0346 x D ³	0.01745 x D ²	5.7 x 10 ⁻⁵ x D	1.654 x 10 ⁻⁴ x D ⁻¹	0.0128 x D ⁻¹	0.0107 x	*	0.02388 x				12087 x D-1	~
dependence on resolution d.	175	Ó	1.1	a 1/2	1		1.5	a 1/4	a Yo	a 1/d		1	1	-	38,000/d

Conclusion

Contributions of different factors to contrast loss

•	Radiation damage degrades structure factors		$\Delta \mathbf{B} = 80$
•	Detectors (e.g. film) poor high resolution MTF (and Detectors (e.g. film) poor high resolution MTF (e.g. film) poor high resolution poor high reso	QE)	$\Delta B = 60$
•	Charging and mechanical movement	$\Delta \mathbf{B} =$	60 to 500
•	Intrinsic molecular flexibility	AB = 3	30 to 500
	Technical challenge is to reduce contribution everything except radiation damage to near 2	ı of zero	