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• Basics of image processing

Real space, Fourier space, convolution, 
lattice lines, correlation, 
autocorrelation

• Image formation

Contrast transfer function and 
application

Fourier theory 2D

Basics of image processing: Fourier transform

3 Cosine functions 
Real-space 1D image as a 
superposition of 3 cosine functions



Real-space 1D image

FT

3 Fourier peaks 

Basics of image processing: Fourier transform

Basics of image processing: Fourier transform

3 Fourier components 3 cosine functions are characterized by 
different frequencies

FT
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Basics of image processing: Fourier transform

3 cosine functions are characterized by 
frequencies, amplitudes and phases

Amplitude tells you “how much” of a 
frequency component is present

Phase tells you “where” the 
frequency components are located 
in the image

Frequency tells you about image 
spacings
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Basics of image processing: 
Fourier transforms of 2D images

Real space

Fourier space
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Russ, The Image Processing Handbook, 2007
FIGURE 4 A two-dimensional crystal can be described as a convolution of an asymmetric unit and a two-dimensional lattice function. Here a
four-cylinder molecular model represents the asymmetric unit. In a protein crystal, an asymmetric unit can be a single polypeptide or an integral
multiple thereof.

homework on a computer workstation using the SPEC-
TRA software developed by Schmid and co-workers

(1993a).
The final output from image and diffraction analysis is

a high-resolution projection map with phases from the
image intensities and amplitudes from the electron dif-
fraction intensities as exemplified by the projection map
of glucose-embedded bacteriorhodopsin in Fig. 8. The
reason that amplitudes from electron diffraction pat-

terns are used for the reconstruction is to eliminate a

tedious and not fully developed step of correcting the
amplitudes from the Fourier transform ofthe image due
to the contrast transfer function and other instrumental
factors. Generally, a projection map is hard to interpret
in terms of its three-dimensional structure. However,
this is a special case in which the density peaks corre-

spond to the projection of nearly parallel alpha helices
across the cell membrane (Unwin and Henderson,
1975). For an unknown crystal, it is important to deter-
mine its symmetry (Holser, 1958). This can be done by

examining the symmetric characteristics (e.g., system-

atic absence of reflections) of an electron diffraction pat-
tern (Chiu and Hosoda, 1978). More importantly, one

can also evaluate the crystallographic symmetry by evalu-
ating the phase relationship of the symmetry-related re-

flections in the computed Fourier transform of the
image intensity (Unwin and Henderson, 1975; Robin-
son etal., 1988).
The next concept to be introduced in this lecture is the

experimental strategy of collecting three-dimensional
image data by tilting crystals in an electron microscope.
The basic crystallography of the distribution of struc-

tural factors in the third dimension ofa two-dimensional
crystal should be discussed. The continuity of the scat-

tering distribution is illustrated in Fig. 9, which also
shows three-dimensional data sets sampled along lattice
rods from a two-dimensional crystal (Amos et al.,
1982). This part is often the most difficult for students to

grasp because their previous instruction in the diffrac-
tion of single three-dimensional crystals does not pre-

Biophysical Journal Volume 64 May 1993

FIGURE 5 Electron diffraction pattern of a two-dimensional crystal. When an electron beam is incident onto a crystal, its diffraction pattern is a
two-dimensional reciprocal lattice with its diffraction intensities weighted by the Fourier transform of the unit cell contents.

1614 Biophysical Joumal Volume 64 May 1993

Chiu et al. Biophysical Journal 
(1993) vol. 64 (5) pp. 1610-25



Basics of image processing: 
image sampling and quantization

Gonzales and Woods, Digital Image Processing, 2008

Basics of image processing: 
discrete Fourier transforms 

cosine fct. with maximum 

frequency on a discrete grid

FT

peak at maximum spatial 
frequency=Nyquist

pixelsize = 
200Å/20pix = 
10 Å/pix



Basics of image processing: 
discrete pixel images can give rise to aliasing 

A) original

B) reduced 50%

C) low-pass 
filtered

A B

C

Basics of image processing: 
properties of discrete 2D Fourier transforms 

binary rectangle power spectrum not 
centered

rectangle rotated by 
45º

rectangle rotated by 
90º and translated

power spectrum (ps) ps intensities log 
transformed

ps rotated by 45º ps rotated by 90º

Gonzales and Woods, Digital Image Processing, 2008



Basics of image processing: 
Fourier transforms of 2D images

Figure 6.7 A two-dimensional step function and its frequency transform (left), and reconstn 

with different numbers of terms (shown as a portion of the frequency transform). The bott ... 

shows horizontal line profiles through the center of the reconstructed spatial image. 
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Figure 6.1 Summation of FOU1'ier frequency terms to fit a simple step filllctiu 1. 
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Russ, The Image Processing Handbook, 2007

RS

1D-RS

FS

Density steps in real space introduce artifacts during image 

processing (e.g. low-pass filtration) 

Solution: addition of smooth falloff ramps to edges (RS), e.g. cosine 

falloff

Basics of image processing: 
Fourier transforms of 2D images

Real space

Fourier space

FT

Amplitudes

Phases

FT

Phase information 
dominates image 
perception

http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm



Basics of image processing: 
Fourier transforms of 2D images

FT

Amplitudes

Phases

iFT

Phase information dominates 
image perception

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT4/node2.html

Basics of image processing: 
Fourier filters of images

Real -->Fourier -->Real 

http://sharp.bu.edu/~slehar/fourier/fourier.html

Low-pass filter

High-pass filter

Band-pass



Basics of image processing: 
Fourier filters of images

Real -->Fourier -->Real 

Low-pass filter

Gaussian low-pass filter

Basics of image processing: 
Fourier reject filters of images

RS FS

Filter Result
Gonzales and Woods, Digital Image Processing, 2008
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Convolution

FIGURE 4 A two-dimensional crystal can be described as a convolution of an asymmetric unit and a two-dimensional lattice function. Here a
four-cylinder molecular model represents the asymmetric unit. In a protein crystal, an asymmetric unit can be a single polypeptide or an integral
multiple thereof.

homework on a computer workstation using the SPEC-
TRA software developed by Schmid and co-workers

(1993a).
The final output from image and diffraction analysis is

a high-resolution projection map with phases from the
image intensities and amplitudes from the electron dif-
fraction intensities as exemplified by the projection map
of glucose-embedded bacteriorhodopsin in Fig. 8. The
reason that amplitudes from electron diffraction pat-
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amplitudes from the Fourier transform ofthe image due
to the contrast transfer function and other instrumental
factors. Generally, a projection map is hard to interpret
in terms of its three-dimensional structure. However,
this is a special case in which the density peaks corre-
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across the cell membrane (Unwin and Henderson,
1975). For an unknown crystal, it is important to deter-
mine its symmetry (Holser, 1958). This can be done by

examining the symmetric characteristics (e.g., system-

atic absence of reflections) of an electron diffraction pat-
tern (Chiu and Hosoda, 1978). More importantly, one

can also evaluate the crystallographic symmetry by evalu-
ating the phase relationship of the symmetry-related re-

flections in the computed Fourier transform of the
image intensity (Unwin and Henderson, 1975; Robin-
son etal., 1988).
The next concept to be introduced in this lecture is the

experimental strategy of collecting three-dimensional
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crystal should be discussed. The continuity of the scat-

tering distribution is illustrated in Fig. 9, which also
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FIGURE 5 Electron diffraction pattern of a two-dimensional crystal. When an electron beam is incident onto a crystal, its diffraction pattern is a
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2D crystals give rise to discontinuous diffraction 
patterns but they have continuous lattice lines in 3D   
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could be treated as a P2 crystal. In general. any space group that is produced by 

ignoring one or more of the symmetry operations that are present is called a subgroup 

of the parent. No error can be made by assign ing a symmetry subgroup for the purpose 

of data processing; the on ly di sadvantage is that one is nO( taking full advantage of the 

redundancy inherent in the data. 

On the other hand, a serious mistake will be made if a space group is assigned that 

has one or more additional symmetry operations beyond those that are really present 

in the crystal. A space group that is formed by [he addition of an operation to a parent 

group with lower symmetry is called a supergroup of the parent. For example, the 

space group P6 is a supergroup of P3, and P4 is a supergroup of P2. Assignment of a 

supergroup will result in averaging data that are not. in fact. equivalent or redundant. 

If the unit cell of a 2-D crystal is an equilateral triangle, for example, and the crystal 

is correctly assigned P3 symmetry, then the result of averaging symmetry-related data 

will produce an equilateral triangle, as it shou ld. If the crystal is wrongly assigned P6 
symmetry, however, the result will look. incorrectly. like a six-pointed star. 

It is important to know that another type of structural redundancy can be present 

in real crystals. This additional redundancy occurs when biological macromolecules 

crystallize as symmetrical oligomers, but the packing arrangement does not "take 

advantage" of the symmetry of the oligomer. Trimers of porin, for example, can crystal-

lize in an onhorhombic lattice (Jap et a I. , 199 1), whic h lacks a 3-fold symmetry ax is. 

Crystals in which this happens are then said to have noncrysIallographic symmetry. 

It is very advantageous to use this noncrystallographic symmelTY to improve the s ignal-

to-noise ratio. Exploitation of noncrystallographic symmetry is more complicated than 

the simple averaging of symmetry related reHections, however. More can be found on 

the topic of noncryslaJlographic symmetry in standard texts of K-ray crystallography, 

such as the one by Drenth ( 1994). 

7.4 The Fourier transform of a 2-D crystal is sampled at discrete 
points in two dimensions, but it is continuous in the third 
dimension 

The reader is familiar with the fact that the Fourier transform of a periodic function 

(i.e .• a crystal) is a set of regularly spaced diffracrion spots . Furthermore, in section 2.5. 

we derived the fact that the Fourier transForm of a crystal is a set of regularly spaced, 

discrete samples of what would otherwise be a continuous function, that is, the Fourier 

transform of a single unit cell. The derivation of this familiar result represents a special 

case, however: it applies only to diffraction from 3-D crystals. Electron crystallography. 

on the other hand, requires the use of thin crystals, preferably ones that are only a single 

molecu le thick. We need to understand. thereFore. that the mathematical theory is no 

longer the same for a thin. 2-D crystal. 

It should be plausible. by intuition, that [he Fourier transform of a 2-D crystal will 

continue Lo be sampled - in the same, regularly spaced fashion as before - in the 

two directions of Fourier space that correspond to the plane of the crystal. At the same 

time, however, the Fourier transform of a 2-D crysta l retains the original, continuous 

values in the third direction that are fou nd in the Fourier transForm of a single unit cell. 

A fonnal. mathematical proof of these two points will be discussed shortly. 

Symmetry and Order in Two Dimensions '83 

It may first be helpful. however, to describe what is mean( when we say that the 

Fourier transform of a single unit cell can be sampled in two dimensions while remain-

ing continuous in the third dimension. The answe r is given by thinking o f a regu lar array 

of parallel lines, as in the illustrati on shown in figure 7.6. Since the lines are parnllelto 

one another and s ince they are spaced apart at regular intervals in two dimens ions, this 

sel of lines can be used to sample the con tinuous Fourier transform in the same way 

Ihat a 3-D lattice of points is used to sample the Fourier transform of a 3-D crystal. 

The values of the continuous Fourier transform that lie on these parallel lines provide 

discrete samples in two dimensions while retaining the original, continuous values of 

the Fourier transform in the third dimension. 

We will refer to the set of parallel lines shown in figure 7.6 as the reciprocallatlice 

lines, although they are also called "reciprocal lattice rods." The reciprocal lattice 

lines play the same role in indexing diFfraction data from 2-D crystals that is played 

by reciprocal lattice points in the case of 3-D crystals. In the case of a 2-D crystal, 

however. the third integer, l, of the traditional Miller indices, (h. k, I), is replaced 

by a continuous variable, usually denoted by z ... Thus, each reciprocal laltice line is 

specified by two, not three Miller indices, and a particular point on a given line is 

identified by the triplet, (h , k, z*). 

An instructive proof that the Fourier transform of a 2-D crystal remains continuous 

in the third dimension begins by observing that a 2-D crystal can be represented as 

the product of a 3-D crystal and a one-dimensional rectangle function. designated S(z) 

(where the symbolS indicates the or the §.hape provided by the rectangle 

function), whose width is equal to one unit cell in the z-direction. This equivalence is 

restated mathematically in the following equation: 

Pz-v crystat( R) = PJ- Dcrystal(R ) · S(z), 

Figure 7.6 The idea of parallel Jines arranged on 

a regular lattice in reciprocal space is shown here 

by a canoon in which the lines are paranel to the 

$: axis. The independcm variation of the value of 

the Fourier transform on each line is indicated 

schematically by smooth varimions of shading 

along each line. Only five such parallel lines are 

shown hcre. bUl the positions of others are 

indicated by variously shaded disks where the 

lines intersect the $.." $, plane. The parallel lines 

are separatcd from one another by fixed amounts. 

which can be different in two independent 

directions. In this particular example, the lanice is 

shown as being one with a 900 angle between the 

a* and b* basis vectors. 

I 

M 

s, 

(7.1 ) 

<:0> 0 • <:> 

o _ 0 

s, 

'82 ELECTRON CRYSTALLOGRAPHY OF BIOLOGICAL MACROMOLECULES 

could be treated as a P2 crystal. In general. any space group that is produced by 

ignoring one or more of the symmetry operations that are present is called a subgroup 

of the parent. No error can be made by assign ing a symmetry subgroup for the purpose 

of data processing; the on ly di sadvantage is that one is nO( taking full advantage of the 

redundancy inherent in the data. 

On the other hand, a serious mistake will be made if a space group is assigned that 

has one or more additional symmetry operations beyond those that are really present 

in the crystal. A space group that is formed by [he addition of an operation to a parent 

group with lower symmetry is called a supergroup of the parent. For example, the 

space group P6 is a supergroup of P3, and P4 is a supergroup of P2. Assignment of a 

supergroup will result in averaging data that are not. in fact. equivalent or redundant. 

If the unit cell of a 2-D crystal is an equilateral triangle, for example, and the crystal 

is correctly assigned P3 symmetry, then the result of averaging symmetry-related data 

will produce an equilateral triangle, as it shou ld. If the crystal is wrongly assigned P6 
symmetry, however, the result will look. incorrectly. like a six-pointed star. 

It is important to know that another type of structural redundancy can be present 

in real crystals. This additional redundancy occurs when biological macromolecules 

crystallize as symmetrical oligomers, but the packing arrangement does not "take 

advantage" of the symmetry of the oligomer. Trimers of porin, for example, can crystal-

lize in an onhorhombic lattice (Jap et a I. , 199 1), whic h lacks a 3-fold symmetry ax is. 

Crystals in which this happens are then said to have noncrysIallographic symmetry. 

It is very advantageous to use this noncrystallographic symmelTY to improve the s ignal-

to-noise ratio. Exploitation of noncrystallographic symmetry is more complicated than 

the simple averaging of symmetry related reHections, however. More can be found on 

the topic of noncryslaJlographic symmetry in standard texts of K-ray crystallography, 

such as the one by Drenth ( 1994). 

7.4 The Fourier transform of a 2-D crystal is sampled at discrete 
points in two dimensions, but it is continuous in the third 
dimension 

The reader is familiar with the fact that the Fourier transform of a periodic function 

(i.e .• a crystal) is a set of regularly spaced diffracrion spots . Furthermore, in section 2.5. 

we derived the fact that the Fourier transForm of a crystal is a set of regularly spaced, 

discrete samples of what would otherwise be a continuous function, that is, the Fourier 

transform of a single unit cell. The derivation of this familiar result represents a special 

case, however: it applies only to diffraction from 3-D crystals. Electron crystallography. 

on the other hand, requires the use of thin crystals, preferably ones that are only a single 

molecu le thick. We need to understand. thereFore. that the mathematical theory is no 

longer the same for a thin. 2-D crystal. 

It should be plausible. by intuition, that [he Fourier transform of a 2-D crystal will 

continue Lo be sampled - in the same, regularly spaced fashion as before - in the 

two directions of Fourier space that correspond to the plane of the crystal. At the same 

time, however, the Fourier transform of a 2-D crysta l retains the original, continuous 

values in the third direction that are fou nd in the Fourier transForm of a single unit cell. 

A fonnal. mathematical proof of these two points will be discussed shortly. 

Symmetry and Order in Two Dimensions '83 

It may first be helpful. however, to describe what is mean( when we say that the 

Fourier transform of a single unit cell can be sampled in two dimensions while remain-

ing continuous in the third dimension. The answe r is given by thinking o f a regu lar array 

of parallel lines, as in the illustrati on shown in figure 7.6. Since the lines are parnllelto 

one another and s ince they are spaced apart at regular intervals in two dimens ions, this 

sel of lines can be used to sample the con tinuous Fourier transform in the same way 

Ihat a 3-D lattice of points is used to sample the Fourier transform of a 3-D crystal. 

The values of the continuous Fourier transform that lie on these parallel lines provide 

discrete samples in two dimensions while retaining the original, continuous values of 

the Fourier transform in the third dimension. 

We will refer to the set of parallel lines shown in figure 7.6 as the reciprocallatlice 

lines, although they are also called "reciprocal lattice rods." The reciprocal lattice 

lines play the same role in indexing diFfraction data from 2-D crystals that is played 

by reciprocal lattice points in the case of 3-D crystals. In the case of a 2-D crystal, 

however. the third integer, l, of the traditional Miller indices, (h. k, I), is replaced 

by a continuous variable, usually denoted by z ... Thus, each reciprocal laltice line is 

specified by two, not three Miller indices, and a particular point on a given line is 

identified by the triplet, (h , k, z*). 

An instructive proof that the Fourier transform of a 2-D crystal remains continuous 

in the third dimension begins by observing that a 2-D crystal can be represented as 

the product of a 3-D crystal and a one-dimensional rectangle function. designated S(z) 

(where the symbolS indicates the or the §.hape provided by the rectangle 

function), whose width is equal to one unit cell in the z-direction. This equivalence is 

restated mathematically in the following equation: 

Pz-v crystat( R) = PJ- Dcrystal(R ) · S(z), 

Figure 7.6 The idea of parallel Jines arranged on 

a regular lattice in reciprocal space is shown here 

by a canoon in which the lines are paranel to the 

$: axis. The independcm variation of the value of 

the Fourier transform on each line is indicated 

schematically by smooth varimions of shading 

along each line. Only five such parallel lines are 

shown hcre. bUl the positions of others are 

indicated by variously shaded disks where the 

lines intersect the $.." $, plane. The parallel lines 

are separatcd from one another by fixed amounts. 

which can be different in two independent 

directions. In this particular example, the lanice is 

shown as being one with a 900 angle between the 

a* and b* basis vectors. 

I 

M 

s, 

(7.1 ) 

<:0> 0 • <:> 

o _ 0 

s, 

R. Glaeser. Electron Crystallography of Biological Macromolecules - Chapter 7.  (2007)
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example: 

(a) image containing many 

letters with superimposed 

random noise; 

(b) target letter; 

(c) cross-correlation 

l'estllt (gray-scale 

representation of 

goodness of match); 

(d) isometric view of image 

showing peaks on the 

A 's in the original; 

(e) thresholded peaks in 

image c superimposed 

on image a. Note that 

only the lellers in the 

same size and font have 

been located. 

Russ, The Image Processing Handbook, 2007
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• Basics of image processing

Real space, Fourier space, convolution, 
lattice lines, correlation, 
autocorrelation

• Image formation

Contrast transfer function and 
application

Fourier theory 2D

Quantitative electron cryo-microscopy: from 
atoms to an EM image

Electron 
microscope



Cryo-EM images are recorded in underfocus

Volkmann & Hanein, 2002

Prediction of angular distribution of elastic 
scattering 

1. Structure factors increase with atomic number Z at 
slope of Z3/4 (higher contrast)

2. Elastic scattering cross section "(e) decreases with 
increasing electron voltage (lower contrast)

352 J.P. Longmo re, M.F. Smith / Quantitative electron microscopy of molecu les ill ice

•

ing due to the component atoms. T he calculat ion

of atomic sca ttering cro ss sections can be done

using rigorous theory or by approximation using

simple formulas. In the case of clastic scattering

the r igorous theory is thought to give re liable

results for higher angles, whe re the scatte ring is

the same as for s ingle atoms . At very small ang les
deviations from the single-atom predictions might

occur du e to chemical effects. Most calcu lations

of clastic scatte ring in th is paper arc done from

the single-atom partial-wave sca tte ring ampli-

tud es [22]. Simple app roxima tions are int roduced

in orde r to allow the rap id estimation of elect ron

scattering from biological molecules and heavy

atoms. Inelastic sca ttering is more difficu lt to

predi ct, due to the effects of chemical bonding

upon the sca tte ring probabili ties. T he predictions

of inelastic scatte ring are largely untested by ex-

periment. In th is pap er we will use a simple

approxima tion to predi ct inela stic sca ttering from

biological molecu les.

2.1.1. Elastic scattering

2.1.1.1. Calculation of elastic cross sections from

partial-ware scattering amplitudes Calculation

of elastic scattering was based on the single-atom

complex partial-wave solutions to elastic sca tte r-

ing from a Hart ree- Fock potential [22]. The ta-
bles gave scattering inte nsities that were compa-

rab le to those previously..used [23J. The differen-

tia l phase shift of scattering was ignored, because

the phase angles va ried only slightly over the

angles used for imaging. The magnitudes of

atomic sca ttering were interpolat ed to 500 equally
spaced angles usin g a four-point Lagrange

method. Th e scattering amplitudes at different

volt ages were calculated by linear interpolation

between the tabl e amplitudes divide d by "Y, whe re

l' - 1/(1 - (3' ) and (3 is the ratio of the electron

velocity to that of light. Calculati ons at higher

voltages were done by extrapolations from 100
keY.

2.1.1.2. Estimation of elastic scattering cross sec-

tions A simple formul a for calcul ating the to-

tal elastic electron sca tte ring cross section of an

atom has bee n shown [23], The recent values for
the partia l-wave sca ttering amplitudes [22] make

it desirab le to modify tha t equation slightly to th e

fo rm:

1.4 X 10- 623/ '
u', - --(3=',,---- [1 - 0 .262/( 137(3)I

(1)

where Ue l is the total elast ic sca tte ring cross sec-

tion (nm "), 2 the atomic number and (3 the

velocity of the electron divided by that of light

«(3' - 1 - [lIIe ' / W, + lIIe' ]'), whe re V, is the

electron acce leration voltage, and 11IC
2 the rest

energy of the electro n.

•

•

•

•

•

,
•

Table

E\'alu
---.J
VOila

(l,V)

10

40

70

100

T

eq. L
usual:

withi,
on

ato

clec

recti

I
tion

angl

tere

lure,

the

ing

tion

Table 1

Comparison of the pa rtial -wave sca tte ring cross sec tio ns at 100 keY with predictions o f eq . (4)

Atom ic Ue (pm
l
) O"c (pm l

) O"c'1c (pm
2) O"c'llc (pm l

) uc'1c (pm
2) O"c'1c (pm

l
)

number (PlY) (e q. (t ) (so=2 nm- l ) (s o '" 2 nm- I) (so -5 nm- I) ( so= 5nm- l
)

(PlY) (eq. (4)) (P lY) (eq. (4»)

I 3.65 4.65 3.0 1 3.72 1.53 2.l3

6 79.4 67.2 65.9 53.8 34.2 33.6

7 85.1 84.4 79.6 675 43.9 39.8

8 90.4 105 100 8'-3 65. 1 52.7

II t48 161 116 131 73.5 82

12 187 186 145 149 82.7 93

15 3 t4 257 255 206 1lJ 129

53 1710 1470 1460 1180 9 10 736

74 2120 2210 1800 1790 1201 1110

79 2110 2l8O 1880 t900 1300 1190

80 2t6O 2420 1920 19..to 1320 1210
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Table 2

Eva luation of the voltage dependence of eq. <0

voltage 2 -6 2 -80
(keV)

Ue (pm
2
) Ue (pm

2
) Ue (pm

2
) Ue (pm

2
)

(parti al wave) (eq. (1» (par tia l wave) (eq. (1»

10 618 510 8550 58' 0
40 170 142 3800 4250
70 105 88.5 2710 3000

100 79.4 67.2 2190 2420

where a is the scatte ring angle, Q o the objec tive

aperture half-angle, S the spatial frequency, So

the maximum spatial freq uency and A the elec-

tron wavelength.

Commonly, objective aper tures are used to

stop electro ns that have been scattered through

angles grea ter than So = 2-5 nm - t (i.e., U o =

7.4- 18.5 mrad at 100 keY). Th e physical diamete r

of the ape rture is D = 2f sin ao ' where f is the

focal length of the objective lens (usually 1-3

rum). Remova l of electro ns by the aperture causes

sca ttering contra st in a bright-field image. Thus,

Table 1 is a comparison of the predic tions of

cq. (I ) with th e par tial-wave calculations. Eq. (I)

usually gives a value for the cross section that is

within 15% of the par tial-wave calcu lations based

on the Hart ree-Fock atomic po tent ials. The esti-

mate for hydrogen gives an except ional erro r of

almost 30%. In eq . (1) the term in paren the ses is

a correction for failure of the first Born approxi-

mation, and is accurate in cases as long as

Z/(l37jl) .. 1.5, as shown in table 2. Thus for

atoms with Z < 92, the correc tion is accurate for
electron voltage s greater than 60 keY. T his cor-

rection is insignifican t for light a toms.

In the electron microscope, the elastic interac-

tions cause elec trons to be scatte red through large

angles. A large frac tion of the e lastically scat-

tered electrons are stopped by the objective aper-

ture, de pending upon the angular acceptance of

the ape rture. It is common to relate the scatte r-

ing angles to spatial frequ encies using the equa-

tions:

ausc •
the

s of

ually

ange

erent

Ition

'here •
.tron
ighe r

100

sec-

e to-
)f an

s for

nake

) the

n' ,

(I )
,,

, see- •
the

light

the

rest

So 2 sin( a o/2) / A,

(2)

(3)

the number of electrons formi ng contrast is equ al

to the numb er scattered outside the aperture.

Th e fraction of elastically scatte red electrons that

are scatte red outside the objective ape rture is

called the e lastic efficie ncy, 'l'JeI' For an atomic

number between 5 and 100, and So = 2-5 nm - I ,

the clastic efficiency is in the ra nge 0.4-0.9. The

effective clastic sca ttering atomic cross section is

equal to the cross section, O'c1' times 'T1e1' To a
good approximation:

1.4 X 1O- 6Z ' / '
""1),, - f3 ' [1 - 0.26Z/(137f3)1

X[I -so/ lO] nm", (4)

assuming that"So is in units of nm - I .

The second term in bracket s is an approxima-

tion for 1}ct for single scatt ering, which is accurate

to better th an 20% over the range I < So < 5
nm - I . To within an uncertainty of < 10%, the
par tial wave values for 1}el are linear in that

range. Table 1 shows that eq. (4) is accurate to

bette r than 20% for the atoms and voltages exam-

ined, excep t for hydrogen . For thick specimens

multip le sca ttering will increase the value of 1}el

slightly.

2. 1.2. Inelastic scattering
Biological molecules and ice scatter electrons

inelastically more frequently th an elastically. For

instan ce, at 100 keY the ratio of inelastic-to-

elastic scatte ring probability for carbon is 1.6(24].

The inelastic scattering is at very small angles

such that in a conven tiona l EM almost all of the

electron s that have only been scattered inelasti-

cally are focused (with chromatic aberra tion) into

the image and do not give rise to scatt ering

contrast. In the absence of chromatic ab erra tion,

the effect of inelastic scatte ring would only be to

decrea se the cohe rence of the transmitted elec-

trons.

The use of a microscope with an elec tron

spectrometer makes it possible to efficiently ex-

clude the inelastically scattered electrons from"

the images and thus allow inelastic sca tte ring to

contribute 10 con trast. The design and ope ration

of this type of micro scope is discussed in refs.
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3.1. Calcuku ions of ice background and cirus COII -

trast with and without energy filtra tion

The ice image inte nsity in the unfilter ed rni-

croscope is I- spec = l un+ l ind + Ie' and that in the

500100 200 3 0 0 4 0 0

thickness (nm)

0 .0
o

0.2

scatte ring caused by a molecule embedde d within

the icc. Using the algorithms and results in sec-

tion 2, we predicted the angular distribut ion of

the intensity of the no-loss and energy-loss elec-

tro ns for different th icknesses of ice. Fig. 3 is a

summary of th e intensities of the three categories

of electrons relevant to image formation (un-

scatte red, l up; inelastically scatte red within the

aperture, iinel ; and elastically scattered within the

aperture, Ie) at 80 keY and So = 4.12 nm " ! as a

function of ice th ickness. It is clear that the

inelastically sca ttered electrons domina te the im-

ages of ice grea te r than -- 150 nm th ick. Removal

of the inelastically scattered electrons has the

poten tial to d ramati cally affect th e images. In th is

section we will illustrat e the effects of ene rgy

filtra tion upon icc background , specimen con -

trast, a nd signa l-to -noise ra tio. Energy-filte red

imaging at 80 keY will be compa red to that at

higher voltages.
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Fig. 3. Intensities of the four cat egor ies of e lectrons relevant

to image forma lion in conventional and energy-filte red EM at

80 kev and so ""4.J2 nm" ", as a func tion of appa ren t ice

th ickness: (diagonall y hatched ar ea) e lastically scatte red elec-

trons within the apertu re. ' e; (verlically ha tched a rea)

energy-loss within the ape rture. Iin<;l; (clear area) unscanered
electrons, ' ..n; (horizon ta lly hatched area) electrons scatte red

outside the obje ctive apertu re, which do not con tribute 10 the

image.
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Fig. 2. Ratio of ice image intensit ies without and with ene rgy

filtration. T his ra tio is ve l)' sensitive to the re lative mean free

paths for e lastic and ine lastic scatterin g. (-- ) Predictions ;

(•••) cryo·EM da ta. Th e ice thickness was calculat ed from

the theoretical mea n free path for ela stic sca ttering at 80 kev.
so -4.12 nm- l •

In order to compare the energy -filte red and

un filter ed images, we calcul ated the images of

thick layers of icc and estima ted th e incremental

emp irical inelastic cross sec tion of icc was as-

sumed to be 181 pm2
• Assuming an ice density of

0.92 g/em), the theoretical mean free pat h for
e last ic sca tte ring ou ts ide the 90 Ilm aperture was

280 om, and the empirical mean free path for

inelastic scatte ring was 180 om. The compa rison

of the predi ct ion s and experimen tal data is shown

in fig. 2. The predictions were very sensitive to

the value chosen for th e inelastic mean free path.

Th e ratio of unfiltered to filter ed icc image inten-

sity (I -spec/I +spec ) is 1 for very thin ice, but

increases to about 2.8 for 200 nm of ice and to

over 12 for 450 nm of icc, as inelastic sca tteri ng

accumulates in the image. Thus for 200 nm and

450 om of icc over 50% and 90%, respectively, of

the electrons in the image have been inelastically

scattered. The good ag reement betwee n the pre-

d ictions and the experimenta l da ta indicat e tha t

our met hod of calculating the images of ice is

valid up to at least 450 nm th ickness.

3. Role of energy filtration in imaging Iruzen-hy-

drated molecules
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increases to about 2.8 for 200 nm of ice and to
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450 om of icc over 50% and 90%, respectively, of

the electrons in the image have been inelastically
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tion 2, we predicted the angular distribut ion of

the intensity of the no-loss and energy-loss elec-

tro ns for different th icknesses of ice. Fig. 3 is a

summary of th e intensities of the three categories

of electrons relevant to image formation (un-
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(•••) cryo·EM da ta. Th e ice thickness was calculat ed from

the theoretical mea n free path for ela stic sca ttering at 80 kev.
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In order to compare the energy -filte red and

un filter ed images, we calcul ated the images of

thick layers of icc and estima ted th e incremental

emp irical inelastic cross sec tion of icc was as-

sumed to be 181 pm2
• Assuming an ice density of

0.92 g/em), the theoretical mean free pat h for
e last ic sca tte ring ou ts ide the 90 Ilm aperture was

280 om, and the empirical mean free path for

inelastic scatte ring was 180 om. The compa rison

of the predi ct ion s and experimen tal data is shown

in fig. 2. The predictions were very sensitive to

the value chosen for th e inelastic mean free path.

Th e ratio of unfiltered to filter ed icc image inten-

sity (I -spec/I +spec ) is 1 for very thin ice, but

increases to about 2.8 for 200 nm of ice and to

over 12 for 450 nm of icc, as inelastic sca tteri ng

accumulates in the image. Thus for 200 nm and

450 om of icc over 50% and 90%, respectively, of

the electrons in the image have been inelastically

scattered. The good ag reement betwee n the pre-

d ictions and the experimenta l da ta indicat e tha t

our met hod of calculating the images of ice is

valid up to at least 450 nm th ickness.
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trons within the apertu re. ' e; (verlically ha tched a rea)

energy-loss within the ape rture. Iin<;l; (clear area) unscanered
electrons, ' ..n; (horizon ta lly hatched area) electrons scatte red

outside the obje ctive apertu re, which do not con tribute 10 the

image.
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Fig. 2. Ratio of ice image intensit ies without and with ene rgy

filtration. T his ra tio is ve l)' sensitive to the re lative mean free

paths for e lastic and ine lastic scatterin g. (-- ) Predictions ;

(•••) cryo·EM da ta. Th e ice thickness was calculat ed from

the theoretical mea n free path for ela stic sca ttering at 80 kev.
so -4.12 nm- l •

In order to compare the energy -filte red and

un filter ed images, we calcul ated the images of

thick layers of icc and estima ted th e incremental

emp irical inelastic cross sec tion of icc was as-

sumed to be 181 pm2
• Assuming an ice density of

0.92 g/em), the theoretical mean free pat h for
e last ic sca tte ring ou ts ide the 90 Ilm aperture was

280 om, and the empirical mean free path for

inelastic scatte ring was 180 om. The compa rison

of the predi ct ion s and experimen tal data is shown

in fig. 2. The predictions were very sensitive to

the value chosen for th e inelastic mean free path.

Th e ratio of unfiltered to filter ed icc image inten-

sity (I -spec/I +spec ) is 1 for very thin ice, but

increases to about 2.8 for 200 nm of ice and to

over 12 for 450 nm of icc, as inelastic sca tteri ng

accumulates in the image. Thus for 200 nm and

450 om of icc over 50% and 90%, respectively, of

the electrons in the image have been inelastically

scattered. The good ag reement betwee n the pre-

d ictions and the experimenta l da ta indicat e tha t

our met hod of calculating the images of ice is

valid up to at least 450 nm th ickness.
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1966: Thon rings
F. Taos, Zur Defokussierungsabhiingigkeit des Phasenkontrastes bei der eleksronenmikroskopisdien Abbildung (S.476). 
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Abb. 2. Aussdmitte aus den Aufnahmen einer Fokussierungs reihe an einer diinnen Kohlefolie. Die Defokussierungswerte sind 
in Abb.l angegeben. Aufnahmedaten : .1.=3,7 .10-1 mm (100 kV); Bestrahlungsapertur all =1.10-3 ; Objektivapertur 

ao=9,6'1O-3 ; elektronenoptisehe VergroBerung 178000: 1; Cesamtvergrolierung 620000: L 

Abb.3 und 4. Bildstrukturen bei Defokus- 
sierungswerten J z in der Nahe der Scheite1  

50 und 5-1.  
Cesamtvergrofierung I 500 000 : L  

..,,-. " .'. t:>.Abb. 4. zlz= + 230 nm, 

 
 '.,:?
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Abb. 8. Elliptische Beugungsfigur 
leicht astigmatischer Bildstrukturen. 
Dern Abstand der Pfeilspitzen ent-
spricht .,1= 0,58 nm, dem Abstand 

der Dreieckspitzen "J=0,67 nrn. 
7 15 22 

Abb. 6. Lichtoptische Beugungsfiguren, die an den Bildstrukturen der Aufnahmen 7,  
15 und 22 der Fokussierungsreihe (Abb. 2) mittels der in Abb. 5 beschriebenen  

Anordnung gewonnen wurden.  

Abb. 9, EinfluJ3 der Objektivaperturbegrenzung 
auf die Bildstruktur. Obere Reihe: ao=9,6'1O-

3 ; 

untere Reihe : 0:0=3,8 '10-3• Gesamtvergroberung 
1250000 : 1. 

+-

LIz: -200 +20 +210 nm 

Abb, 10. Aufnahmen aus einer Fokussierungsreihe. Die Objektdetails mit ca. 5 nm Dureh-
rnesser werden dureh Streuabsorptionskontrast hervorgehohen. Die rnittlere Aufnahme zeigt 
wegen der auf  =3,8 '10- 3 begrenzten Objektivapertur versdiwindend geringen Phasen-

kontrast. GCMmtvergroBerung 1 000 000 : 1.  
LIz: 0 +300nm  

Zoitsduift fiir Naturfcrschung 21 a, Sette 476 b. 
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Thon, Zeitschrift Naturforschung 1966
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Astigmatism detectable from Thon rings

Orlova, CTF talk 2004
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used for this comparison were corrected for the partial coherence

from the 100 condenser aperture (Er ic kso n, 1971) as this has

a significant effect on the determination of Af The values of Af

obtained in this way are accurate to about 200A.

Optical Diffraction - Qualitative Analysis

Fig. 2 shows the image used for the ana lysis, and the corre-

sponding optical diffraction pattern, at thr ee different de-

focussings. Fig. 2b shows the diffraction patt ern most clearly,

a

b

b

and th is is diagrammed and the indexing indicated in Fig. 3.

The spa tial frequency of the spots varies from 1/89A- I for

the (0,2)spot, to 1/24A-I for the (1,7)spot. Theexpected change

in the amplitude of the spots is shown qualitatively in these

optical diffraction patt ern s.At ,1/ = 0, Fig. 2a , phase contrast

is zero for this resolution range (cf. Fig. 1a) and the image is

due entirely to amplitude contrast. The transform is generally

weak and many of the higher resoluti on components are
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transfer function should be - [0.93sin 1t A.u2 + 0.35cos 1t A.u2]. •
Most of the experimental points lie between these two curves

in Fig. 4, and the points due to lower resolution Fourier com-

ponents generally lie closer to the curve with amplitude con-

trast. There are some consistent deviations due to the effects

of partial coherence. The resolution dependence of amplitude

contrast and the effects of partial coherence cannot be in-

cluded in a single transfer function plotted as a function of

the common variable u. For this is it necessary to plot the

scaled amplitudes from each individual image as a function

of IX/A. and to compare these with individual transfer func-

tions calculated for each particular A], This is presented in

Fig. 5.

To calculate the theoretical transfer functions it is first

necessary to know Q(IX). This is given directly in the plot for

A] = 0, Fig. 5a, since sinx(lX) = 0 and COSX(IX) = lover this
entire resolution range. In this case, where the image is due

completely to amplitude contrast, the lower resolution spots

are seen to be about 40 per cent of their maximum amplitude.

Higher resolution components are lower, 20 per cent or less of

their maximum amplitude, and are frequently indistinguishable

from the background noise in the transform. The somewhat

arbitrary straight line drawn through these points in Fig. 5a

ischosen as the function Q(IX) for this particular specimen under

these conditions of microscopy. This Q(IX) is then used for

calculating the theoretical transfer functions at the different

values of A], The agreement of these theoretical curves with

the experimental scaled amplitudes in Fig. 5b-5fis generally

quite good over the range of resolutions and defocussing

investigated.

The theoretical transfer functions in Fig. 5 are from a linear

or first order theory of image formation, which ignores multiple

scattering and related "second order" effects. The important

assumption for the linear theory is that the first order interac-

tion, the product of each Fourier component with the zero

order term, is much larger than the second order interactions,

the product of one Fourier component with another. The

overall good agreement of the experimental data with the

first order theoretical curves indicates that the second order

effects are mostly unimportant. A notable exception is the

consistent deviation of the (1,4)spot from the theoretical curve.

This deviation can be attributed to a significant second order

interaction of the (1,0)spot with the (0,4)spot. This will appear

in the transform at the (1,4)position, the sum of the indices of

the two interacting components. It will be significant because

the two interacting components are quite strong, while the

observed amplitude at the (1,4)position is weak. The product

ofthe two components, 15.4 x 8.2 = 126,is in fact comparable

to the product of the observed (1,4) term with the zero order

term, 1.5 x 100 = 150 (see Fig. 3). The behavior of this term

as a function of defocussing, and the deviation from the linear

theory, can be explained by more detailed consideration of the

second order effects (Erickson, 1971). The important point

for the present discussion is that this and one or two other less

significant deviations from the linear theory are completely

accounted for as second order effects; and that except where

second order effects are expected to be strong the linear theory

is confirmed experimentally.
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Fig.5
Scaled amplitudes of diffraction spots from individual micro-
graphs at the indicated degree of underfocus. The indices (h, k) are
givenacrossthe top of thediagram.Filledcircles indicateh positive,
open circles h negative, and filled squares are for (0,k) and (h,O)

spots. For Af= oA the straight line drawn through the points is
chosen as the experimentally determined estimate of the function
Q(IX). The curves for the other cases are the theoretical transfer
function - [P(IX)sin X(IX) + Q(IX) cosX(IX)]. The curves are also
corrected for the partial coherence of the electron source as men-

tioned in Fig. I

of Llfand IX/A., are plotted in Fig. 4 as a function ofthe variable

u "" 1X/A..jAj.Assuming pure phase contrast the points should

follow the common transfer function, - sin 1t A.u2. Assuming

35 per cent amplitude contrast for all values of IX the common

#f = 0 nm

#f = 80 nm

#f = 540 nm

#f = 1040 nm

#f = 1450 nm

#f = 1950 nm
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missing. At 5400A underfocus, Fig. 2b, where we expect

phase contrast to be enhanced over the resolution range

rJ.I). = 0.02 to 0.05A-I (cf. Fig. l c, especially the dotted curve

corrected for partial coherence), the intensity of the discrete

spots, and of the image noise, is increased considerably.

Many of the higher resolution components, which were weak

or missing in the in-focus transform are quite strong here. The

effect of excessive defocussing is displayed in Fig. 2c, where

the first zero of the transfer function, seen as the ring of low

intensity noise in the over-exposed left half, passes through

the region of the catalase transform. The (0,6)spot, which was

reasonably intense in Fig. 2b, is at a spatial frequency, rJ.IA,

near this zero and, as we expect, it is missing in this image

transform. In addition the (1,7)spot now falls in the next ring

of maximum noise intensity, or under the second peak of the

transfer function. It should therefore be contributing to the

image with reversed contrast although the sign change is not

indicated in the optical diffraction pattern. Since at this

defocussing the higher resolution components of the catalase

transform are missing or are contributing to the image with

reversed contrast we can say that this image is excessively

underfocussed.

.051 k=7 .0.56

0.71

k=5
0.71 14 8.2 15- .....
•0.37

k=3

Fig.3
The compensated transform reconstructed from the computer
transformsofthe setofmicrographs in the focal series. Thedirection
ofthe arrowsindicatesthe phaseangleofthe diffraction spot and the
numbers give the maximum amplitudefor that spot, relative to the
zero order component of amplitude 100. The phase anglesdepend
on the originusedin calculating the transform. Apoint at the bottom
left hand corner of the images in Fig.6 wasusedhere,whichliesat
the intersection of the glideaxisand mirror line in the planegroup,
pg m, of the image. The fact that the phase angles are all multiples

of 90 degrees confirms the planegroup symmetry

Fig.4
Scaledamplitudesfromthecomplete focal seriesplottedasa function
of the common variableu = rJ.IAJAl The solid curve is the theo-
reticaltransferfunctionforthecaseofpurephasecontrast, - sin!t A u2 •
The dashed curve is the theoretical transfer function assuming 35
per cent amplitude contrast, - [.93sin !tAU 2 + .35cos !tAU 2
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for the effects of defocussing, and will be discussed below in

relation to the reconstruction of the compensated image.

For further analysis and comparison of the experimental

results with the theoretical expression, Equation (5), it is con-

venient to scale the amplitudes of the spots in each image

transform by dividing by the maximum amplitude. This is

tantamount to dividing each image transform by the object

transform, which we have determined above (Fig. 3). The

scaled amplitudes will vary between plus and minus one, and

should be equal to the value of the transfer function,

[P(a)sinx(rJ.) + Q(a)cosx(a)]. (P(a) is a normalization factor,

related to Q(a), chosen to make the maximum value of the

transfer function unity.)

For the initial comparison with the theory the scaled

amplitudes from the complete focal series, for all combinations

Computer Transforms - Quantitative Comparison withTheory

To investigate these effectsmore quantitatively we have used

the systems available in this laboratory, developed largely by

DeRosier and Moore (1970), for obtaining the complex

Fourier transform of an electron micrograph by digital

computer. This gives numerically the amplitude, and also the

phase angle, of each of the diffraction spots and makes possible

a quantitative measure of the changes seen qualitatively in the

optical diffraction patterns.

Considering first the phase angle, which is not recorded in

the optical diffraction pattern, we recall from Equation 3 or

Equation 5 that the phase of the image transform should not

be affected by the defocussing. This prediction was confirmed

in the numerical transforms as the phases of the diffraction

spots, shown in Fig. 3, varied only 10 or 15 degrees with

different degrees of moderate underfocussing. With excessive

defocussing the phase of the higher resolution components,

falling under the second peak of the transfer function (e.g. the

(1,7) spot in Fig. 2c), did change phase by exactly 180 degrees.

This is equivalent to the change of sign of the transfer function

from minus to plus, and confirms that these components are

contributing to these images with reversed contrast.

The changes in the numerical amplitudes of the diffraction

spots with defocussing was the same as that seen qualitatively

in the optical diffraction patterns. The amplitude of each spot

increased with underfocussing, reached a maximum at a parti-

cular value of Ll f, and fell toward zero with greater defocussing.

Higher resolution components reached the maximum for

moderate amounts of underfocussing, lower resolution com-

ponents only for·much greater defocussing. By examining the

transforms from the complete focal series the maximum

amplitudes of each of the spots was determined and the

maximumcontrast transform shown inFig. 3was reconstructed.

This is essentially the true object transform, compensated

Contrast-transfer theory

Scattering angle "
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Fig. I
The phasecontrast transferfunction, - sinX(!X), plotted as a function
of !X/A., in A-', for A. = .042A, C, = 1.3 mm, and for the indicated
values of A]. A negative value of this function implies that the
corresponding region of the object transform is contributing to the
imagewith normal contrast, i.e. a subtraction from the background
electron intensityover regionsof highmassdensity. The solidcurves
are for pure phase contrast. The dashed curvesare correctedfor the
effects of chromatic aberration with normal electrical instabilities,
by averagingover a range of A] of ± 200A.The dotted curves are
correctedfor the effects ofthe partial coherenceoftheelectronsource,
assuming a 100Il diameter condenser aperture. These corrections

are discussed by Erickson (1971)

= - TO(rx,c/»A (rx)/(rx)sin X(rx). (3)

A zero order term, equivalent to the transform of the average

background intensity over the area of the image, has been

left out of the right hand side of Equation (3).

Equation (3) shows that the relationship of the object to

the image formed in the presence of aberrations is very direct

and simple when expressed in terms of the Fourier transforms.

The image transform is directly proportional to the object

transform, modulated by the three factors, the most important

of which is sin X(rx). The result is especially simple .because

each of these factors is a real number and therefore modulates

only the amplitudes of the complex transform, leaving the

phases unchanged. Object details of resolution corresponding

to a particular spatial frequency, rx/A., are thus imaged with a

contrast proportional to sin X(rx).

The physical significance is best discussed with reference

to the graphs of - sin X(rx) in Fig. 1. At ,1/ = 0, X(rx) is deter-

mined solely by spherical aberration, and sin X(rx) is essentially

zero except for higher resolutions, rx/A. > 0.07A- 1. Lower
resolution components of the object transform do not contri-

bute to the in-focus image through phase contrast. The optimum

defocussing for high resolution phase contrast microscopy is

around 900 Aunder focus, because - sin X(rx) is then close to
-1.0 over a large range of resolutions, for values of rx/A.

of the compensation system, to the medium resolution range

immediately accessible with available specimens and practical

routine microscopy. The extension of the results and the

systems to high resolution, when improvements in specimen

preparation and instrumental techniques make it experi-

mentally practicable, should be relatively straightforward.

Definitions and Assumptions in the Theory

Phase contrast is produced by the interference ofthe scattered

electron wave that passes through the objective aperture with

the unscattered or background electron wave. Amplitude

contrast is produced by the loss ofelectrons which are scattered

outside the objective aperture. In the case where the scattered

electron wave is only a small fraction of the unscattered wave,

which is more or less generally true in the microscopy of thin

specimens, a particularly simple first order or linear approxi-

mation can be invoked. The derivation of this first order theory,

and the nature of the errors introduced by second order effects,

will be treated in detail elsewhere (Erickson, 1971). The

definitions and results of the derivation will be given here.

Under normal conditions ofmicroscopy the thickness ofthe

specimen is much less than the defocussing increment needed

to produce changes in the image, and all layers of the specimen

can thus be considered to be at the same level of focus. The

specimen can then be treated as a two dimensional object

and described by a function, u(x,y), giving the projected

density in atoms per unit area at object plane coordinates x, y.

The object transform is defined as

TO (rx,c/» JJ u(x,y)e-¥[x. cos </> + y.sin</>Ldxdy (1)

where the transform is given in circular coordinates, rx/A. and

c/>. rx can be identified physically as the angle of scattering in the

microscope, A. is the electron wavelength, and rx/A. is the

reciprocal radial coordinate, in A- 1, which designates the
spatial frequency, or less strictly the reciprocal resolution,

of object details contributing to the transform. c/> is the azi-

muthal coordinate.

In the wave theory of image formation the effectsof spherical

aberration and defocussing are attributed to a phase shift,

X(«), which the scattered electron wave undergoes at the

diffraction plane of the microscope. This is a function of

scattering angle rx:

x(rx) = 2A.
1t

[ -c, +,1/ ] (2)

where C, is the coefficient of spherical aberration and ,1/ is
the defocussing (positive for a weak or underfocussed lens).

The effect of an objective aperture can be accounted for by

defining an aperture function, A (rx), which is zero for those

scattering angles obstructed by the aperture and unity other-

wise.

The atomic scattering factor, /(rx), for elastic scattering of

electrons by a single atom, also enters the derivation.

Transform of the Phase Contrast Image

Phase contrast is the predominant factor in the medium

and high resolution image. The transform of the phase contrast

image, is related to the transform of the object (Equation

(1» by the expression:

Bd. 74. Nr.11
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(4)

between 0.1A-I and 0.23A-I. The negative sign which

appears in Equation (3),and which is included in the graphs in

Fig. 1, indicates a reduction in electron intensity over areas

of high mass density, the condition of normal contrast. The

image transform is thus identical to the object transform over

this region (ignoring now the factors A(IX) and f(IX)) and we

can say that the object transform is contributing to the image

with maximum or "true", phase contrast. If sin X(IX) = 1 for

all IX the microscope would be equivalent to a perfect phase

contrast microscope. Actually for values of IX!). less than

0.1A-I and greater than 0.23A-I, sin X(IX) is less than unity.
Corresponding components of the object transform will

contribute to the image with reduced contrast, but otherwise

without distortion or artifact.

Artifacts are introduced at higher resolution when sin X(IX)

goes through zero and changes sign. Corresponding parts of

the object transform will contribute to the image, but because

of the sign change the contrast will be reversed, i.e. image

details of corresponding reciprocal spacing will be black

where they should be white. It is in this sense that the optical

resolution of the microscope is limited to about 4.5A (IX!). =
0.23A-I) since at higher resolution details are being imaged
with alternating reversed and normal contrast.

At larger A] the peak of normal phase contrast becomes

sharper and moves to lower values of IX!).. At 5000A under
focus, details between 50 and 20A resolution, IX!). = 0.02 to
0.05A-I,will be imaged with normal phase contrast. Artifacts
will occur for IX!). > 0.07A-I so the resolution of this image is
limited to 15A. This will be a particularly useful defocussing
for biological microscopy when one wants to obtain a high

contrast image of details in this medium resolution range, and

is not concerned about artifacts at higher resolution.

The Transform of the Amplitude Contrast and Total Image

The contribution to the image from amplitude contrast is

given by a similar simple expression

; ° (1 A) ()T.mp(IX,q;) = -T (1X,q;)A(IX) TIN;;S, cos X IX.

S, is the cross section for scattering outside the objective

aperture (Burge and Smith, 1962), A is the atomic number,

and No is Avogadro's number. The aberration function

appears as cos X(IX) here because the amplitude contrast is

identified in the theoretical derivation with the real part of

the scattered electron wave, while the phase contrast is identi-

fied with the imaginary part.

In general amplitude and phase contrast will both contri-

bute, independently, to the image, and the total image trans-

form can be written

= - TO(1X,q;)f(lX) A (IX) [sin X(IX) + Q(IX) cos ;(IX)]. (5)

The factor Q(IX) gives the potential contribution of amplitude

contrast relative to that of phase contrast. It is essentially a

measure of the number of electrons scattered outside the ob-

jective aperture, relative to the amplitude of the electron wave

within the aperture. Q(IX) should be less than 0.1, indicating

negligible amplitude contrast, for a light element such as

carbon, but should be much higher, up to 0.4, for a heavy

element. It should be noted that, since cos X(IX) is large where

sin X(IX) is small, the amplitude contrast will contribute signi-

ficantly at low resolutions, where sin X(IX) goes to zero as IX!).

approaches zero. Alternatively, in so far as Q(IX) varies only

slowly with IX, the addition of a small fraction of amplitude

contrast can be considered as a phase shift, 1[>, where the

curves in Fig. 1 should be replaced by -sin [X(IX) + 1[>],

shifting them all to the left.

Compensation of Spherical Aberration and Defocussing

Obviously the conventional microscope, when operated

with a small degree of underfocusing as in Fig. 1b, is almost

a perfect phase contrast microscope out to a resolution of

4.5 A. It is actually better than the curve for pure phase contrast
indicates because the reduced phase contrast at the lower

resolutions is largely compensated by amplitude contrast, as

will be shown below in the discussion of the experimental

measurements. In the range of validity of Equation (3) or

Equation (5) it should be possible to extend the resolution

well beyond the 4.5A limit set by spherical aberration by

correcting the transform for the contrast reduction and

contrast reversal of the higher resolution components. For

this one would obtain the transform of the image and deter-

mine the true object transform from it, essentially by dividing

the image transform by sin X(IX).The compensated image is then

reconstructed directly by inverse Fourier transformation. The

value of sin X(IX) can be readily calculated from the electron

optical parameters, or determined directly from the micro-

graph (Th0 n, 1966). Of course where sin X(IX) and the amplitude

of the image transform go to zero this process becomes in-

determinate and corresponding components of the object

transform cannot be determined from this single micrograph.

These may be only a small part of the whole transform and

may be negligible for the reconstruction of the compensated

image. Ifnot they will have to be determined from other micro-

graphs at slightly different values of defocussing where the

zeros of sin X(IX) occur at different values of IX. A system like

this has been proposed and outlined by Schiske (1968).

Experimental Methods

Thin crystals of catalase, negatively stained with uranyl acetate,
wereusedas a test specimen for experimental analysis becausetheir
transform is particularlysuitable. Thesecrystalsare essentially two
dimensional (the onesactuallyusedare probablytwo crystallayers,
about 200A thick) periodic structures, and the transform thus
consistsof a set of discrete, well defined spots on the corresponding
reciprocal lattice. The amplitude and phase of these discrete spots
are readily determined by computer processing, giving a quanti-
tative measure of the variations in the image transform with
defocussing at the spatial frequency corresponding to each spot.
Micrographs were taken with a Philips EM-300, operating at

80kV, using a 10011 second condenser aperture, and no objective
aperture. A focal series of 12 micrographs, ranging from in-focus
to 20,000 A underfocus, was obtained and analysed. The amount
of defocussing was determined for each micrograph by measuring
the radius of the rings of maximum and minimum noise intensity
in the optical transform, and comparing these with the peaks and
zeros of sin X(tX) calculatedfor small increments of LJj The modu-
lation of the diffraction pattern of the noise image by the transfer
function, and its relationto defocussing, has beenpreviously demon-
strated by Thon (1966). The small fraction of amplitude contrast
in the high resolution range where the ringsweremeasured, tXIA. >
.04A- " wasnegligible for thisdetermination. The theoreticalcurves
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[sin x( a) + Q(a ) cos x( a)]' (32)

x( a) 2" I A( - C,a'/4 + l>1 a'12), (31)

J ,( a, </» -Jo(a, </» 2 A (a )J( a )IA{sin x (a )

cos x ( a ) }.

(30)

where C, is the coefficient of spherical abe rration

and l> I th e defocus.
The term in brackets is referred to as the

microscope contrast transfer function,

I
I
l

•

effects. .
Ignored

ble at Ii

Fig. 9. Ca

EM902 (,\

(33)

where

Q( a ) = [SmMI 2AAf( a)].

The function sin x(a) is commonly referred to

as the phase contrast transfer function and

Q(a) cos x(a) as the scatte ring contrast transfer

function. Both arc commonly expressed as a func-

tion of spatial frequ ency. Usually Ifa) and Qfa)
are considered constant over the frequ ency range

of relevance to biological appli cation s, and the

where ...?i(a, c/» is the Fouri er transform of the

image intensities, fo(a , 4» the Four ier transform
of the object den sity, c/> the azimuthal angle,

A(a) the objective aper ture function (I for a < ao,
ofor a > a u), I( a) the molecul ar sca ttering am-

plitude, A is Avogadro's number and

direction s. In order to compensate for the CCD

transfer function , we have divided the Fouri er

transform of the image array by the CCO transfer

function. Und er the conditions of our densitome-

try (Ix I,. 0.4 nm), the value of G fO.5 nm - I )

was 0.94. Thus, at the resolution limit of the

reconstructions discussed in this paper, the com-

bined effects of recordin g film and densitometry

were to att enuate the amplitudes by '""" 20%.

Compensation of the digitized image array for

these two effects must be done to make the

image array a faithful rep resentation of the image

inten sities.

4.1.1.3. Microscope contrast transfer [unction

According to the first-ord er theory of the elec-

tron microscope CfF [13,43]. the relationship be-

tween image intensity and object mass den sity

'can be expressed in reciprocal space by:

The microscope Cl'F, however, depends strongly

upon objec t composition and microscope oper at-

ing conditions, warranting a more detailed expla -

nation.

4.1.1.2. CCD densitometry transfer [unction

Densitometry introduces chang es in the fre-

quency spectrum of the image, becau se the imag-

ing device docs not sample points but, rather,

contiguous a reas in the image. Th e transfer func-

tion in this case is the Fourier transform of one

sensitive pixel on the CCD. This can be desc ribed

by:

where s is the spa tial frequency and s 1/2 is the

frequency at which the transfer functi on has a

value of one half. \Vhen interpreting our film, we

have used the values given in ref. [44]. In ord er to

compensate for the film transfer function, we

have divided the Fouri er transform of the image

array by the film transfer function. Using Kodak

SO 163 and a magnification of 30 300 X , SI / 2 was

estimated to be 1.24 nm- I, and therefore the

value of F(O.5 nm") was 0.86, which means at

the resolution limit of the reconstructions dis-

cussed in this paper, the effect of the elect ron

film was small but could not be neglected.

CCO tran sfer function

- G( s.. s,.) - sine(/x sx) sine(l,.s, ) . (29)

where Ix and I}, are the pixel dimensions and s.r

and s)' are the spatial frequ encies in the x and y

4./ . /.1. Film transfer [unction The photo-

graphic record of the image intensities is imper-

fect. Electron scatterin g within the emulsion

sprea ds the exposure over many grains. The size

and shape of the distribution depend upon the

incident electron energy and the silver density.

Th e result is attenuation of the higher spatial

frequencies, described by a film transfer function.

An analytical representation of the film transfer

function that fits empirical data quite well has

been described [44J:

film transfer function = F( s )

I /[ 1 + (SI SI / ,) ']. (28)
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Object transform

Microscope CTF

$ - phase shift due to:
% - wavelength of electrons
Cs- spherical aberration
#f - defocus

Q - amplitude contrast ratio

Erickson & Klug, Bericht Bunsengesellschaft 1970

Q ~ 7-14 % for biological specimens in ice
Q ~ 15-35 % for biological specimens in 
Uranyl Acetate1134 H. P. Erickson and A.Klug:The Fourier Transformof an ElectronMicrographetc. Berichte der

Bunsen-Gesellschaft

transfer function should be - [0.93sin 1t A.u2 + 0.35cos 1t A.u2]. •
Most of the experimental points lie between these two curves

in Fig. 4, and the points due to lower resolution Fourier com-

ponents generally lie closer to the curve with amplitude con-

trast. There are some consistent deviations due to the effects

of partial coherence. The resolution dependence of amplitude

contrast and the effects of partial coherence cannot be in-

cluded in a single transfer function plotted as a function of

the common variable u. For this is it necessary to plot the

scaled amplitudes from each individual image as a function

of IX/A. and to compare these with individual transfer func-

tions calculated for each particular A], This is presented in

Fig. 5.

To calculate the theoretical transfer functions it is first

necessary to know Q(IX). This is given directly in the plot for

A] = 0, Fig. 5a, since sinx(lX) = 0 and COSX(IX) = lover this
entire resolution range. In this case, where the image is due

completely to amplitude contrast, the lower resolution spots

are seen to be about 40 per cent of their maximum amplitude.

Higher resolution components are lower, 20 per cent or less of

their maximum amplitude, and are frequently indistinguishable

from the background noise in the transform. The somewhat

arbitrary straight line drawn through these points in Fig. 5a

ischosen as the function Q(IX) for this particular specimen under

these conditions of microscopy. This Q(IX) is then used for

calculating the theoretical transfer functions at the different

values of A], The agreement of these theoretical curves with

the experimental scaled amplitudes in Fig. 5b-5fis generally

quite good over the range of resolutions and defocussing

investigated.

The theoretical transfer functions in Fig. 5 are from a linear

or first order theory of image formation, which ignores multiple

scattering and related "second order" effects. The important

assumption for the linear theory is that the first order interac-

tion, the product of each Fourier component with the zero

order term, is much larger than the second order interactions,

the product of one Fourier component with another. The

overall good agreement of the experimental data with the

first order theoretical curves indicates that the second order

effects are mostly unimportant. A notable exception is the

consistent deviation of the (1,4)spot from the theoretical curve.

This deviation can be attributed to a significant second order

interaction of the (1,0)spot with the (0,4)spot. This will appear

in the transform at the (1,4)position, the sum of the indices of

the two interacting components. It will be significant because

the two interacting components are quite strong, while the

observed amplitude at the (1,4)position is weak. The product

ofthe two components, 15.4 x 8.2 = 126,is in fact comparable

to the product of the observed (1,4) term with the zero order

term, 1.5 x 100 = 150 (see Fig. 3). The behavior of this term

as a function of defocussing, and the deviation from the linear

theory, can be explained by more detailed consideration of the

second order effects (Erickson, 1971). The important point

for the present discussion is that this and one or two other less

significant deviations from the linear theory are completely

accounted for as second order effects; and that except where

second order effects are expected to be strong the linear theory

is confirmed experimentally.
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Fig.5
Scaled amplitudes of diffraction spots from individual micro-
graphs at the indicated degree of underfocus. The indices (h, k) are
givenacrossthe top of thediagram.Filledcircles indicateh positive,
open circles h negative, and filled squares are for (0,k) and (h,O)

spots. For Af= oA the straight line drawn through the points is
chosen as the experimentally determined estimate of the function
Q(IX). The curves for the other cases are the theoretical transfer
function - [P(IX)sin X(IX) + Q(IX) cosX(IX)]. The curves are also
corrected for the partial coherence of the electron source as men-

tioned in Fig. I

of Llfand IX/A., are plotted in Fig. 4 as a function ofthe variable

u "" 1X/A..jAj.Assuming pure phase contrast the points should

follow the common transfer function, - sin 1t A.u2. Assuming

35 per cent amplitude contrast for all values of IX the common
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assumption for the linear theory is that the first order interac-

tion, the product of each Fourier component with the zero

order term, is much larger than the second order interactions,

the product of one Fourier component with another. The
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first order theoretical curves indicates that the second order

effects are mostly unimportant. A notable exception is the

consistent deviation of the (1,4)spot from the theoretical curve.

This deviation can be attributed to a significant second order

interaction of the (1,0)spot with the (0,4)spot. This will appear

in the transform at the (1,4)position, the sum of the indices of

the two interacting components. It will be significant because

the two interacting components are quite strong, while the

observed amplitude at the (1,4)position is weak. The product

ofthe two components, 15.4 x 8.2 = 126,is in fact comparable

to the product of the observed (1,4) term with the zero order

term, 1.5 x 100 = 150 (see Fig. 3). The behavior of this term

as a function of defocussing, and the deviation from the linear

theory, can be explained by more detailed consideration of the

second order effects (Erickson, 1971). The important point

for the present discussion is that this and one or two other less

significant deviations from the linear theory are completely

accounted for as second order effects; and that except where
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Q(IX). The curves for the other cases are the theoretical transfer
function - [P(IX)sin X(IX) + Q(IX) cosX(IX)]. The curves are also
corrected for the partial coherence of the electron source as men-
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of Llfand IX/A., are plotted in Fig. 4 as a function ofthe variable

u "" 1X/A..jAj.Assuming pure phase contrast the points should

follow the common transfer function, - sin 1t A.u2. Assuming
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Cryo-EM images are under focussed

Volkmann & Hanein, 2002

Influence of defocus on a single point: 
point-spread function

#f = 600 nm

van Heel et al., 
Q Rev Biophys 2000

#f = 80 nm

315Single-particle electron cryo-microscopy

(a) (b)

(c) (d)

Fig. 2. Extent of the point spread function (PSF) in real space. The PSF is the Fourier transform of the
CTF and represents an alternative way of describing the same concept. The PSF, at defocus values that
are typically used in cryo-EM, lead to a spread of the information of a single 1 A! ‘pixel ’ of the image
(256!256 pixels), over an area as large as an E. coli ribosome. The defocus values used here, in part
correspond to the CM300 defocus values used in Fig. 1. The calculations were performed with the
‘ Impose CTF’ option of the   program (see main text). (a) PSF of the CM300 at 1"1
Scherzer (# 800 A! underfocus). (b) PSF CM300 at 9 Scherzer (6000 A! underfocus). (c) PSF CM300 at
# 23 Scherzer (1"5 µm underfocus). (d ) PSF CM300 at 9 Scherzer (6000 A! underfocus) after CTF
correction by phase flipping.

the SNR increases with the square root of the exposure dose whereas with the first definition

the SNR increases proportionally to the exposure. Although both definitions are possible, the

variance-based SNR definition reflects better the aspect of ‘ information harvesting’ in noise-

limited data. We need to maximise the ‘ information’ collected from each molecule since this

will minimise the number of molecular images required to achieve the required resolution and

will facilitate all further data processing. Information – as originally defined by Shannon in

1948 (Shannon, 1948; van Heel, 2000b) – is defined as :

I$ !log (1%SNR). (1)

#f = 1500 nm
compensated 

by phase flipping



Influence of defocus on 2D image

Downing & Glaeser, Ultramicroscopy 2008

perpendicular to one another, in directions that are parallel to the
edges of the square. In this example, the two sinusoidal
components both have a period of 1.3 nm.

Fig. 2(B) shows a simulation of the image that this test object
would produce at a defocus of 2mm. This value of defocus was
chosen in order to shift the patch of each set of fringes by half the
edge-length.

Fig. 2(C) and (D) shows the results produced when two
commonly used methods of CTF correction are applied to the
defocused image in Fig. 2(B). These results demonstrate that the
original object is recovered remarkably well by CTF correction.
The contrast restoration is, in fact, somewhat more complete

when CTF correction is done by phase flipping rather than
by multiplying by the CTF. A quantitative comparison between
the contrast in the original object and that obtained
after CTF correction demonstrates that 50% of the delocalized
signal is restored by multiplying by the CTF and 65% of the
delocalized signal is restored by phase flipping. The simu-
lations also show that the remainder of the signal is delocalized
once again as a result of both of these procedures. In other
words, the twin image problem observed for optical recon-
struction of an in-line hologram also occurs when either phase
flipping or multiplying by the CTF is used as the restoration
filter

ARTICLE IN PRESS

Fig. 1. The wedge-shaped pattern of radial spokes shown here provides an object in which each spatial frequency is localized at one particular position along the horizontal
axis. The height of the panel represents 30nm in these simulations. (A) The original pattern. (B) The pattern when imaged with a defocus of 2 mm and an electron energy of
300keV. There are clearly resolved zeros and contrast reversals in certain zones of spatial frequency, while at the higher spatial frequencies it is seen that the Fourier
components are shifted so much that two sets of spokes separate from each other. (C, D) Single-sideband images of (A) computed with the same effective defocus as in (B).
Here the effects of the wave aberration can be seen as producing vertical shifts of the Fourier components by amounts that are proportional to the frequency of that
component. The image in (B) is the sum of those shown in (C) and (D).

K.H. Downing, R.M. Glaeser / Ultramicroscopy 108 (2008) 921–928924
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The influence of defocus on a 1D image

Langmore & Smith, Ultramicroscopy 1992
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lated from the projected sca tter ing probabilities

using a rea l-space algorithm [37]. T he radi al re-

co nstruc tions rep resents scattering densit ies,

which shou ld. in th e case of the e nergy- filtered

images, be nearl y proportional to mass de nsit ies

(t able 3). The scattering densitie s depend stro ngly
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Fie. Comparison of predicted mass densities with experi-

menta l and predicted sca tte ring densities of Th lV at 1.9 nm

resolution. (-- ) Predicted radial mass densities; (U U h )

pred icted radial scatte ring densities; (--) Cf'Fcccm-

pensated expe rimental rad ial scatte ring densities. From ref.

[371

upon solvent composiuon and density. In addi-

tion , th e relat ionship be tween scatte ring and mass

is slightly di fferent for pha se and scatt ering co n-

trast. In th eory , th e rati o of scattering to ph ase
contras t is lar ger for a toms of higher a tomic

number. and large r for thi cker layers o f ice.

Fig. 14 compa res th e predic ted rad ial mas s

densiti es, predicted radi al scatte ring densities and

the expe rimental radi al sca ttering den sities of

TMV. The predic tions have been calc ulated from

first-ord er theory [13] using the X-ray coord ina tes

[16J. The peaks at 2.5, 4.2, 6.0 and 7.5 nm rad ius

ca n be att ributed to the a series of reve rse turns,

the RNA, the LS, RS, LL and LR helices, and

the C helix [16J. The scatte ring de nsities from the

compen sated cryo-Ejvl dat a appea r to be a valid

representa tion of the radia l mass-de nsity distribu -

tion of bo th RNA and protein. The re la tive

heights of the RNA and protein peaks wou ld

have been significa ntly diffe rent if the TMV had

been surrounded by vacuum or glucose. as shown

in fig. 15. Thus. ice is an ideal medium for quant i-

ta tive e lectron mic roscopy of mixture s of nucl eic

acids and proteins. The accu racy of th e recon-

struc tion of th e internal density d istribut ion o f

TMV shows that quan tita tive EM of frozen-hy-

drated molecules is a reality.

How do the cryo-EM radia l recon stru ctions of

TMV compare with results by STEM? Fig. 16

Supplied by The British Library - "The world's know ledge"

Compensation of CTF
368 J.P. Langmare, AI.F. Smith / Qunntitasice electron microscopy ofmolecules ill ice

0.'

b

0.50 .1 0 .2 0 .3 0 .4
spatial frequency (nm" ,

o.,

0 .• ,-,- - - - - - - - - - --"

0.,--.-- --- - - - - ---"

··i 0 .2

e·

resolution (fig. 13b, dashed line). Th ere is little

resemblance between the projection obtained

from the defocused image dat a and th at pre-

d icted theo ret ically. The proj ection ob ta ined af-

ter CfF compen sation, howeve r, closely resem-

bles the theoret ical projection. The excellent
ag ree me nt between the ca lculate d ima ge and the

observed image after CTF compensation reflects
th e accuracy o f th e mod el and scatte ring calcula-

tions, and the adequacy of th e first-order th eory

to compensate the images from very low spatial

frequencies to the resolution limit of 1.9 11m [37],
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Fig. 12. Observed an d predic ted one-dimensional Fourie r

equatorial tr ansforms of frozen-hydrated T t-.tV. (a) Fourier

transform of the obse rved image with 780 nm defocus

( - -); Fourier tra nsform of the pre d icted scattering from

TMV (nnn). (b) Fou rier tr ansform of the obse rved image

afte r CfF compensation (--); Fourier transform of th e

predic ted scattering from TM V (uu u ). Comparison of th e

observed and pred icted Fou rie r amplitud es gave a crystallo-

graphic R fac tor o f 0.12, whe re R = LI Fobs - Fprcd I/ E Fo1w
CfFs were calcu la ted assuming Q = 0.14. Fourier transforms

were normalized to unity at zero spa tial frequen cy. 1.9 nm

resol ution. Da ta from ref. [37].

tions of th e elec tron microscope, photograph ic

film, and den sitomet ry are acc ura te, it should be

possible to reconstruct th e int ernal mass densities

of bio logical mo lecu les from the images. The

most stringent test of th e calcula tion s and proce-

dures is to recon struct th e int ernal den sities of a

known str ucture , such as TMV. This can be done

most effectively ove r a wide range of spa tial fre-

quencies by pe rforming a radial density recon-

struction from the defocused images, becau se of

th e continuity of informati on along the equat or of

the Fourier transform of the molecule (fig. 12). If

cryo -EM is able to correctly de termine den siti es

0. '

·
0 .2

e·

0.'

Cryo-EM has the po te ntial to accurate ly det er-

mine th e ab solute mass of b iological molecules

without the use of an internal standard [37]. Ab-

so lute sca tt e ring probabiliti es ca n be related di-

rectly to mass per unit a rea using the ca lculated

valu es o f th e mass sca ttering coefficient, Sm (see

sec tions 2.2.1 . and 2.2.2). Summation o f the ma ss

per unit area ove r th e molecul ar area yields th e

tot al molecul ar mass, from which the ma ss per

unit len gth can be derived . Tabl e 3 is a summary
of th e theo ret ical mass sca ttering coefficients o f

ice and biological materi al in vacuum and in

vitreou s ice, contain ing ave rages ove r all th e

atoms of each type of molecule.

Fig. 13b shows observed and predicted abso-
lute sca t te ring probabilities of fro zen-hydrated

TMV [37]. The integrated ' scatte ring probability

per unit length was 0.75 and 0.74 nm for the

cryo-EM data and model, respectively. Thus, the

obse rved molecul ar scatte ring cro ss sec tion

agreed quantitatively with th at predicted. The

theoreti cal mass sca tte ring coe fficie n ts in tabl e 3

also predic t the correct mass pe r un it len gth.

Thus energy-filtered cryo-EM should be an effec-

tive tool for de te rmining the absolute mass and

mass den siti es of biological molecul es, without

th e inherent limitations to resolution th at affec t

use of dark-field STEM.

4.3. Determination of absolute mass

If the ca lcula tions of mass sca tte ring coeffi-

cients and compen sation for the transfer fun c-

4.4. Determination of radial densities
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Figure 4. Lou-dosr bright-tield image of energy-filtered frozen-hydrated TM\’ at 780 nm defocus. Inwt is a calwlatwl 
Fourier transform of a 100 nrn segment af TMV. The bar represents 50 nm. 

1971: li:rickson. 1971). However, the fidelity of the 
cotnprnsated images has never been proven experi- 
mentally for biological molecules of known struc- 
ture, Thus. it is important that the compensated 
TMV images be compared t.o the atomic st’ructure of 
TMV. Typical TMV images at 780 nm defocus, and 
a representative Fourier transform are given in 
Figure 4. The strong helical transform confirms that 
the particles have remained well-ordered in both the 
equatorial and meridional directions. 

The (‘TF at 780 nm defocus calculated from the 
first)-order theory is given in Figure 5(a). The 
empirical value for t,he parameter Q was determined 
to be 0.14 by comparing the images at 780 and 
4620 nm defocus (Materials and Methods). The 
equatorial Four& amplitudes from the calculated 
and empirical rryo-EM images before and after CTF 
compensation were compared in order to t’est the 
validity of the first-order theory in predicting the 
CTF. (‘omparison of the Fourier transform of the 
model with that of the image at 780 nm defocus is 
given in Figure 5(b). The large differences between 
the relative peak heights illustrate the necessity for 
compensation. After compensation (Fig. 5(c)), the 
agreement between the model and experimental 
Fourier transform is excellent, with a crystallo- 
graphic K factor of 0.12. The extremely low R factor 
reflects the accuracy of the model and scat’tering 
calculations, and the adequacy of the first-order 
theory to compensate the images from very low 
spatial frequencies to the resolution limit of 1-9 nm. 

Tn order to test the sensitivity of image compen- 
sation t,o the det,ails of compensation, the R factor 
was calculated after compensation with a range of 
values of Q, shown in Figure 6. The R factor is a 
minimum for 0.13 <Q <O.17, with substantial 

degradation of the fit between model and clomperl- 
sated image outside that range. 

Proje&ed scattering probabilities of TM V before 
and after (‘TF compensation, and t,hrL predicted 
projection at the same resolution are given in Figure 
7. There is little resemblance between t,he projection 
obtained from the defocused image data and that 
predicted t heoret,ically. The project,ion obtained 

aft,er csompensation. however, closely resembles t)he 
theoretical projection, confirming that the cornpen- 
sated images caorrectly represent the tnolecaular 
st,rucl urf’. 

(tl) A hxolutr scattering probability and nmss 
per unit length, 

The data in Figure 7(b) can also bca ceompared to 
determine how well the absolute scatt,ering from 
TMV agrees with the predictions based on the model 
and t,he t,heoretical mass scattering coefficients that 
have been summarized in Table 1. The integrated 
scattering probabilities (scattering cross-section per 
unit length) were 0.75 and 0.73 nm for the cryo-EM 
data and model, respectively. Thus, thp empirica,] 
mass scattering coefficient was only 2.5?;, greater 
than that predicted. Use of the predicted average 
mass scattering c0efficient.s for protein a.nd RNA 
given in Table I also results in an integrated scat- 
tering probability of 0.73 nm, assuming 95oi, pro- 
tein, 5% RNA and a mass per unit length of 131.1 
kDa/nm (2130 identical protein subunits of 
molecular weight 17,500; 3 ribonucleotides/subunit; 
300 nm in length). Presumably, Table I could be 
used to determine the absolute mass, mass per unit 
length and mass densities of unknown biological 
molecules in vitreous ice. 

Smith & Langmore, J Mol Biol 1992#f = 780 nm compensated

Zemlin, Micron 1994

The envelope of the CTF is significantly 
reduced by FEG  microscopes

Table I. Comparison of the typical parameters ora thermionic source
and a FEG

Illumination ape rture P 1.6 · 10- " rad 5 .10- 6 rad

Lateral coherence wid th 37A 1200A
' e=O.16 · i./P

Brightnessb 106 A cm - .l sr- I IO'Acm- .l sr - 1

Solid angle
w= 2n{l<osfl) g' IO- 'sr g' IO- l lsr
ro;:;nfll

Cu rrent density in 5OeA -.l sec -
'

SOcA-.l scc - 1

spec imen planej= b ' W

always possible to increase the latera l coherence arbitra r-

ily by dcmagnifying the illuminating source and/or by

magnifying the distance 1(see Fig. I). But the increase of

the coherence ob ta ined in this way leads to a decrease of

the beam density, the latt er being proportiona l to the

second power of the illuminating apertu re. Using a

thermionic source for high -coherence illuminat ion , there-

fore, enta ils a very low beam density which, in turn ,

requ ires extremely long exposure times. A higher coher-

ence with suffi ciently strong beam den sity can be achieved

with a FEG d ue to its 1000 x higher bright ness. In Tabl e I

a comparison of these two types of so urces is described

using typical values.

compare the thermionic source with the FEG , their

typical pa ram eters are selected :

thermionic source: p= 1.6 · 10- ' rad tJ.£/£=
1.6 · 10- ';

field emissioo gun: P=5 · 10-' rad tJ. £/£ = 8 · 10- ' .
Th e PCTFs are calculat ed for two foci.

First, a t Scherzer focus tJ.ft = ,;c;. (see Fig. 2a) and

second at tJ.f,=3,;c;. (see Fig. 2b).
The spherical aberra tio n coefficient C, = 1.0 mm , the

ch roma tical aberra tion coefficien t Ce= 1.0 mm, the accel-

era tion voltage is U= 100 kv .

In Fig. 2a, the inner curve belongs to the thermionic

source, the outer curve to the FEG . It is apparent that the

fading to high frequencies is significantly weaker using a

FEG . However. at low spatial frequ encies (large spacings)

the gaps in the PCTF cu rves a re identi cal for both

illumin ating sources. The microscope a t th is defocus has

the effect of a high-pass filter ; there is a lack of ph ase

con trast from co until about 20 A. Th e well kn own
procedure of retrieving the low spatial frequencies of the

specimen is defocusing .

In Fig . 2b. the PCTFs at 3,;c;. underfocus are shown.

Th e gap at low space frequencies is more or less filled . (At

stro nger defocus the first maximum of the PCTF would

shift furth er to lower space frequencies.)The advantage of

the FEG is evident a t high spatia l frequencies (spacings at

F. Zcm lin

Field-emission
gun

Th ermionic
source
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where p is the illuminati on apertu re.
The partially temporal coherence is genera ted by the

var ying wave length of the electrons (energy spread of the

electro n beam). Monochroma ticity wou ld, of course, be

op tima l for the constructive interference used in .phase

contras t imaging. But in practice all beam so urces emit

electro ns with varying ene rgy. Th e effect of this energy

spread on the phase contras t image is also described by an

envelope of tile PCTF, the so-called 'tempora l envclopc'z,

(Hanszcn and Trepte, 1971 ; Fran k, 1976; Zeitl er, (990):

Adju sting the same curre nt density (Table 1;

50 ejA2 sec) in the specimen plane involves, in the case of

a FEG, a lateral coherence wid th that is about 32 times

larger than that using a thermionic source.

Th e influence of partially lat eral coherence on the

phase-contrast image was described by Frank (1973) by

mea ns of a n expo nen tially decreasing function called

'lateral envelope'. This function dam pens the idea l phase-

cont rast tran sfer func tion B toward s the high spatial

frequencies, i.e. reduces the resolut ion . The ma thema tical

procedure is to mult iply the idea l PCTF (1) with "(' , (J).
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' ,(" tJ.£/E)=exp( -(CP)'(tJ.£/£)'.').
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Here, Ce is the ch rornarical aberra tion coefficient ,AEJE is
the ene rgy distribution .

Figure 2 illust rates how the effect ofboth the lateral and

the temporal coherence atte nuates the PCTFs. In order to

(b )

Fig. 2. Phase-contrast transfer-functions, inner curves due to
thermionic source (dashed) oute r curves due 10 field-emission

gun. (a) Scherze r focus A/=JC. · i..

(b) Focus l;f-l jC,i. .
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Table I. Comparison of the typical parameters ora thermionic source
and a FEG

Illumination ape rture P 1.6 · 10- " rad 5 .10- 6 rad

Lateral coherence wid th 37A 1200A
' e=O.16 · i./P

Brightnessb 106 A cm - .l sr- I IO'Acm- .l sr - 1

Solid angle
w= 2n{l<osfl) g' IO- 'sr g' IO- l lsr
ro;:;nfll

Cu rrent density in 5OeA -.l sec -
'

SOcA-.l scc - 1

spec imen planej= b ' W

always possible to increase the latera l coherence arbitra r-

ily by dcmagnifying the illuminating source and/or by

magnifying the distance 1(see Fig. I). But the increase of

the coherence ob ta ined in this way leads to a decrease of

the beam density, the latt er being proportiona l to the

second power of the illuminating apertu re. Using a

thermionic source for high -coherence illuminat ion , there-

fore, enta ils a very low beam density which, in turn ,

requ ires extremely long exposure times. A higher coher-

ence with suffi ciently strong beam den sity can be achieved

with a FEG d ue to its 1000 x higher bright ness. In Tabl e I

a comparison of these two types of so urces is described

using typical values.

compare the thermionic source with the FEG , their

typical pa ram eters are selected :

thermionic source: p= 1.6 · 10- ' rad tJ.£/£=
1.6 · 10- ';

field emissioo gun: P=5 · 10-' rad tJ. £/£ = 8 · 10- ' .
Th e PCTFs are calculat ed for two foci.

First, a t Scherzer focus tJ.ft = ,;c;. (see Fig. 2a) and

second at tJ.f,=3,;c;. (see Fig. 2b).
The spherical aberra tio n coefficient C, = 1.0 mm , the

ch roma tical aberra tion coefficien t Ce= 1.0 mm, the accel-

era tion voltage is U= 100 kv .

In Fig. 2a, the inner curve belongs to the thermionic

source, the outer curve to the FEG . It is apparent that the

fading to high frequencies is significantly weaker using a

FEG . However. at low spatial frequ encies (large spacings)

the gaps in the PCTF cu rves a re identi cal for both

illumin ating sources. The microscope a t th is defocus has

the effect of a high-pass filter ; there is a lack of ph ase

con trast from co until about 20 A. Th e well kn own
procedure of retrieving the low spatial frequencies of the

specimen is defocusing .

In Fig . 2b. the PCTFs at 3,;c;. underfocus are shown.

Th e gap at low space frequencies is more or less filled . (At

stro nger defocus the first maximum of the PCTF would

shift furth er to lower space frequencies.)The advantage of

the FEG is evident a t high spatia l frequencies (spacings at
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where p is the illuminati on apertu re.
The partially temporal coherence is genera ted by the

var ying wave length of the electrons (energy spread of the

electro n beam). Monochroma ticity wou ld, of course, be

op tima l for the constructive interference used in .phase

contras t imaging. But in practice all beam so urces emit

electro ns with varying ene rgy. Th e effect of this energy

spread on the phase contras t image is also described by an

envelope of tile PCTF, the so-called 'tempora l envclopc'z,

(Hanszcn and Trepte, 1971 ; Fran k, 1976; Zeitl er, (990):

Adju sting the same curre nt density (Table 1;

50 ejA2 sec) in the specimen plane involves, in the case of

a FEG, a lateral coherence wid th that is about 32 times

larger than that using a thermionic source.

Th e influence of partially lat eral coherence on the

phase-contrast image was described by Frank (1973) by

mea ns of a n expo nen tially decreasing function called

'lateral envelope'. This function dam pens the idea l phase-

cont rast tran sfer func tion B toward s the high spatial

frequencies, i.e. reduces the resolut ion . The ma thema tical

procedure is to mult iply the idea l PCTF (1) with "(' , (J).
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Here, Ce is the ch rornarical aberra tion coefficient ,AEJE is
the ene rgy distribution .

Figure 2 illust rates how the effect ofboth the lateral and

the temporal coherence atte nuates the PCTFs. In order to

(b )

Fig. 2. Phase-contrast transfer-functions, inner curves due to
thermionic source (dashed) oute r curves due 10 field-emission

gun. (a) Scherze r focus A/=JC. · i..

(b) Focus l;f-l jC,i. .
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Table I. Comparison of the typical parameters ora thermionic source
and a FEG

Illumination ape rture P 1.6 · 10- " rad 5 .10- 6 rad

Lateral coherence wid th 37A 1200A
' e=O.16 · i./P

Brightnessb 106 A cm - .l sr- I IO'Acm- .l sr - 1

Solid angle
w= 2n{l<osfl) g' IO- 'sr g' IO- l lsr
ro;:;nfll

Cu rrent density in 5OeA -.l sec -
'

SOcA-.l scc - 1

spec imen planej= b ' W

always possible to increase the latera l coherence arbitra r-

ily by dcmagnifying the illuminating source and/or by

magnifying the distance 1(see Fig. I). But the increase of

the coherence ob ta ined in this way leads to a decrease of

the beam density, the latt er being proportiona l to the

second power of the illuminating apertu re. Using a

thermionic source for high -coherence illuminat ion , there-

fore, enta ils a very low beam density which, in turn ,

requ ires extremely long exposure times. A higher coher-

ence with suffi ciently strong beam den sity can be achieved

with a FEG d ue to its 1000 x higher bright ness. In Tabl e I

a comparison of these two types of so urces is described

using typical values.

compare the thermionic source with the FEG , their

typical pa ram eters are selected :

thermionic source: p= 1.6 · 10- ' rad tJ.£/£=
1.6 · 10- ';

field emissioo gun: P=5 · 10-' rad tJ. £/£ = 8 · 10- ' .
Th e PCTFs are calculat ed for two foci.

First, a t Scherzer focus tJ.ft = ,;c;. (see Fig. 2a) and

second at tJ.f,=3,;c;. (see Fig. 2b).
The spherical aberra tio n coefficient C, = 1.0 mm , the

ch roma tical aberra tion coefficien t Ce= 1.0 mm, the accel-

era tion voltage is U= 100 kv .

In Fig. 2a, the inner curve belongs to the thermionic

source, the outer curve to the FEG . It is apparent that the

fading to high frequencies is significantly weaker using a

FEG . However. at low spatial frequ encies (large spacings)

the gaps in the PCTF cu rves a re identi cal for both

illumin ating sources. The microscope a t th is defocus has

the effect of a high-pass filter ; there is a lack of ph ase

con trast from co until about 20 A. Th e well kn own
procedure of retrieving the low spatial frequencies of the

specimen is defocusing .

In Fig . 2b. the PCTFs at 3,;c;. underfocus are shown.

Th e gap at low space frequencies is more or less filled . (At

stro nger defocus the first maximum of the PCTF would

shift furth er to lower space frequencies.)The advantage of

the FEG is evident a t high spatia l frequencies (spacings at
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where p is the illuminati on apertu re.
The partially temporal coherence is genera ted by the

var ying wave length of the electrons (energy spread of the

electro n beam). Monochroma ticity wou ld, of course, be

op tima l for the constructive interference used in .phase

contras t imaging. But in practice all beam so urces emit

electro ns with varying ene rgy. Th e effect of this energy

spread on the phase contras t image is also described by an

envelope of tile PCTF, the so-called 'tempora l envclopc'z,

(Hanszcn and Trepte, 1971 ; Fran k, 1976; Zeitl er, (990):

Adju sting the same curre nt density (Table 1;

50 ejA2 sec) in the specimen plane involves, in the case of

a FEG, a lateral coherence wid th that is about 32 times

larger than that using a thermionic source.

Th e influence of partially lat eral coherence on the

phase-contrast image was described by Frank (1973) by

mea ns of a n expo nen tially decreasing function called

'lateral envelope'. This function dam pens the idea l phase-

cont rast tran sfer func tion B toward s the high spatial

frequencies, i.e. reduces the resolut ion . The ma thema tical

procedure is to mult iply the idea l PCTF (1) with "(' , (J).

1/r [1/1.]

I/)

" ",
r

/ \ .

\
, ",,

"tJ.1,
- I
o 1/16 1/ 8 1/5 1/4

o

-,

", "

0

,.,

-,
0 1/16 1/8 1/5 1/4 1/3 1/2

1/, [1/1.]

<a)

(2)

(3)

( ( C"-N')')' ,(', (J) = exp - pn • ).

' ,(" tJ.£/E)=exp( -(CP)'(tJ.£/£)'.').

"

Here, Ce is the ch rornarical aberra tion coefficient ,AEJE is
the ene rgy distribution .

Figure 2 illust rates how the effect ofboth the lateral and

the temporal coherence atte nuates the PCTFs. In order to

(b )

Fig. 2. Phase-contrast transfer-functions, inner curves due to
thermionic source (dashed) oute r curves due 10 field-emission

gun. (a) Scherze r focus A/=JC. · i..

(b) Focus l;f-l jC,i. .
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The B-factor describes the decay of high-
resolution detail

Stark, Zemlin & Boettcher (1996) Ultramicroscopy

12 R. Henderson / Image contrast in t tREM ~,j" hiolo,q, ical macromoh'cnles' 

shown in figs. 8 and 9 show clear  devia t ions  from 

the helical  symmetry,  showing that  the T M V  was 

somehow d a m a g e d  before  the p ic tures  were  

taken.  This lack of  precise  mi r ro r  symmetry  shows 

that  spec imen p repa ra t i on ,  even in quick-frozen,  

vi t reous  ice, is not  wi thout  problems.  It is not 

known whe the r  this devia t ion  from helical sym- 

metry is due to a densi ty  change  dur ing  f reezing 

[20], the exclusion of  ions from the advancing  

i c e / w a t e r  in ter face  [21] or  o the r  unknown ef- 

fects. However ,  my view is that  at this stage, 

devia t ions  from precise  symmetry  are  less impor-  

tant  to unde r s t and  and should  be cons ide red  a 

sepa ra t e  p rob lem from the fall-off in cont ras t  

with resolut ion.  Note  that  the g rea te r  s t rength  of 

the 6th layer line, visible in Downing ' s  [9] image 

of  T M V  in glucose,  nmst  be largely due to con- 

t rast  match ing  of  the low-resolut ion  Four i e r  com- 

ponen t s  because  of  the approx imate ly  equal  den-  

sity of  p ro te in  and glucose.  

If the cont ras t  loss can be overcome,  then 

images  should  be expec ted  to extend in resolut ion  

to the limit shown in the X-ray pa t te rn ,  which for 

T M V  is beyond  3 A (fig. 10 and refs. [22-24]). 

The  r e m a i n d e r  of  this p a p e r  will discuss the 

possible  exp lana t ions  for this image deg rada t ion  

with the aim of p ropos ing  prac t ica l  me thods  for 

overcoming  the p rob lem.  Note  that  the conclu-  

sion by Jeng et al. [15], that  T M V  image ampli-  

tudes  ag reed  well with those  ca lcu la ted  from 
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Fig. 12. Comparison of the plots of contrast versus resolution for the best TMV image (e) with similar data for the best purple 
membrane low temperature ( + ) and room temperature ( x ) images. It is clear that the TMV contrast falls off at considerably lower 
resolution, and that for this reason the purple membrane analysis has been possible to 3 ~,, whereas the TMV can only be carried 

o " 

out at 10 A at the present time. 

Slope ratio = 6.2

Slope ratio = 4.1

Henderson, Ultramicroscopy 1992

1. Radiation damage degrades structure factors  &B = 80 

2. Detectors (e.g. film) poor high resolution DQE &B = 60

3. Charging and mechanical movement     &B = 60 to 500

4. Intrinsic molecular flexibility     &B = 30 to 500
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135 viruses, 4355 segments with step size of 70 Å (200,000 asymmetric
 units) recorded on Technai F30, 200 kV at defocus 1.5-4 µm
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Segmentation of helical specimen

135 viruses, 4355 segments with step size of 70 Å (200,000 asymmetric
 units) recorded on Technai F30, 200 kV at defocus 1.5-4 µm

Defocus -3.5 µm

Software for CTF determination

IMAGIC TRANSFER

SPIDER

EMAN - CTFIT graphical interface

MRC programs: CTFFIND3/CTFTILT2



Henderson & Unwin, J Mol Biol 1975

2D crystals: S/N weighting and phase flipping
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in the electron diffraction patterns. We believe it is better to use the electron diffrac-

tion pattern rather than the Fourier transform of the image for this purpose because

the electron diffraction pattern is insensitive to effects associated with the contrast

transfer function and gives all the intensities on the same scale.

The ratios of the amplitudes computed from individual low-dose micrographs to

the amplitudes from the electron diffraction patterns, when plotted against spatial

frequency, form curves showing a series of well-defined maxima and minima (Fig. 2).

The positions of these maxima and minima can be identified almost exactly with those

in the optical transforms of the corresponding high-dose micrographs and are consis-

tent with the theoretical contrast transfer functions calculated after estimating, from

the high-dose micrograph, the degree of under-focus (see Fig. 2). We can thus confirm

(0)

2'0

-2-0

0·0 0·05 0·10 0·20

Ul-']
FIG. 2. Demonstration of the accuracy of the method of determining the signs of the phases by

using information from a second micrograph. (a) The structure factor amplitudes calculated from
a low-dose micrograph of the purple membrane as ratios (R) of their electron diffraction values,
plotted against spatial frequency; they form a curve consisting of a series of maxima and minima.
(b) The background-corrected intensity (I) across the optical transform of the corresponding
high-dose micrograph; the positions of its maxima and minima match up almost exactly with
those in (a). (c) The phase contrast transfer function appropriate to (b) (under-focus = 5750 A;
spherical aberration coefficient = 1·6 mm), illustrating how the sign assignments are made.
In principle, and as is evident from (a), a second micrograph is not strictly necessary for deter-

mining the signs of the phases. However, in practice, for a reliable determination, it is more or
less essential.

derived CTF

Intensities of FT 
from low-dose 

image

R=
Diffraction Amp.
FT Amp.(image)   

R. Henderson / hnage contrast in ftREM q[ biological macromolecules 5 

evaporation from the 1% solution used to wash 

the grids. Under  these conditions, glucose is a 

liquid, which becomes immobile on cooling to 

liquid-nitrogen temperature.  Fig. 3 shows a typi- 

cal electron diffraction pattern and an optical 

diffraction pattern from an image of a similar 

specimen. It is clear that the contrast fades out 

more rapidly in the image at high resolution. Fig. 

4, however, shows that it is nevertheless possible 

to retrieve phases for the Fourier components of 

the best images of purple membrane to resolu- 

tions of 2.8 A (from Baldwin et al. [13]). Fig. 5 

presents a plot of contrast versus resolution for 

three of the best images of purple membrane 
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Fig. 3. The electron diffraction pattern and an optical diffraction panern of an untilted purple membrane specimen are shown on 

the same scale• It is easy to see that the image spot intensities fall off faster with resolution than those in the electron diffraction 

patterns. The patterns are printed with a mirror plane relating them, and with corresponding spots circled. The electron dose used 

was different in the two cases, with electron diffraction patterns being recorded with doses of 1 2 electrons/,~, 2 and images at 

10-20 electrons//~, 2. 

Henderson, Ultramicroscopy 1992

SPIDER for CTF determination

1. Estimation of the defocus of each 
micrograph from its averaged power 
spectrum

2. Interactive determination of the 
defocus of each micrograph

http://www.impmc.jussieu.fr/impmc/Recherche/bio/CMET/Enseignement/



beyond a resolution of about 1:8nm!1. The apparent
discrepancy may be due to an inaccurate value used for
the amplitude contrast (A), or a lack in the sampling
resolution of the spectrum and fit. An inaccurate value
for the amplitude contrast may indeed lead to errors in
the fit, as discussed below. However, the results pre-
sented in Table 1 show that for the parameters used in
all four fits the errors are small. To estimate the effect of
the errors in an untilted image, the CTF is plotted in
Fig. 7 using an average of the two defocus values from
the fit in Fig. 6. Fig. 7 also shows CTF plots for defocus
values 10 nm higher and lower than the average defocus.
These additional plots illustrate how much the CTF
changes at a resolution of 0.3 nm when the defocus value
has an error of 10 nm, demonstrating that an error of
10-nm shifts the CTF zero at 0.3-nm resolution by about
one-tenth of a period. As a result, some of the image
data, when corrected for their CTF, would acquire the
wrong phase. However, the affected data are close to
zeros of the CTF; thus, these data will generally be weak
and have poor signal-to-noise ratios. Such data will
contribute minimally to a final reconstruction since they

Fig. 6. CTF fit (a) The diagnostic output image for image b3730,
showing the average background-subtracted power spectrum on the
right, and the fitted CTF on the left. The two defocus parameters, DF1

and DF2, and the astigmatic angle aast, were determined to be
597.5 nm, 525.1 nm, and 4.3!, respectively (see Table 1). Crystal re-
flections originating from the 2D crystal in the image are visible in the
power spectrum on the right. However, they are not noticeable in the
radial average. (b) Plot of the radial average of the average back-
ground-subtracted power spectrum in (a) (solid line) and the fitted
CTF (dotted line). The radial averaging leads to a small reduction in
amplitude of the fitted CTF towards higher resolution since there is a
small astigmatism present in the image.

Fig. 7. Error in the measured defocus value. The CTF is plotted for
different defocus values. The solid line shows the CTF for an under-
focus of 500 nm, and the two dotted lines show CTF plots for 490 and
510 nm underfocus. Seven percent amplitude contrast was included in
these plots, and a microscope running at 200 kV and a spherical ab-
erration coefficient of 2mm were assumed.

Table 1
Comparison of defocus values from bacteriorhodopsin images

Image DF1 (nm) DF2 (nm) aast (deg) CCp

Crys. CTFFIND D1 Crys. CTFFIND D2 Crys. CTFFIND Da CTFFIND

b3730 601.0 597.5 )3.5 531.4 525.1 )6.3 8.6 4.3 4.3 0.17
b3736 472.0 473.3 1.3 545.8 555.9 10.1 103.1 99.9 3.2 0.18
b3737 572.2 577.4 5.2 490.4 491.8 1.4 11.9 11.2 0.7 0.18
b3739 400.7 398.1 )2.6 316.8 317.1 0.3 5.5 6.5 1.0 0.23

Crystallographic defocus values including astigmatism (DF1, DF2, and aast) were determined by minimizing phase residuals between individual
images and a merged data set used to calculate a projection map of bacteriorhodopsin at 0.26-nm resolution (ref).

D1;D2 and Da are the differences between crystallographic values and values obtained using CTFFIND3.
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CTFFIND3 determines CTF incl. astigmatism

and Langmore, 1992) for proteins embedded in ice and
0.19 (Zhu and Frank, 1994) to 0.35 (Erickson and Klug,
1971) for proteins embedded in stain (uranyl acetate). k
is the electron wavelength, g is the scattering vector
describing the difference between the wave vectors k and
k0 of the unscattered and scattered electrons, g ¼ k0 " k,
and Cs is the spherical aberration coefficient of the
objective lens. The defocus Df is given by (Henderson
et al., 1986)

Df ¼ 1=2 DF1

!

þDF2 þ DF1ð "DF2Þcos 2 ag
!"

" aast
#$#

;

ð6Þ
where DF1 and DF2 are the two defocus values de-
scribing the defocus in two perpendicular directions in
an image when astigmatism is present, aast gives the
angle between the first direction (described by DF1) and
the X-axis, and ag is the angle between the direction of
the scattering vector g and the X-axis. Note that in Eq.
(3) a positive value for the defocus indicates an under-
focus. The definitions of the parameters in Eq. (6) are
summarized in Fig. 3.

The defocus parameters can be determined by a least-
squares fit between the positions of the minima in the
calculated squared CTF and the observed power spectra
(Conway and Steven, 1999; Zhu et al., 1997). This ap-
proach relies on the radial averaging of the power
spectrum to reliably detect the positions of the minima.
The defocus parameters can also be determined by a
least-squares fit between the calculated CTF and square
root of the observed power spectrum (Frank, 1972) or
between the square of the calculated CTF and the power
spectrum (Henderson et al., 1986). This requires the
additional determination of a scaling factor. We use an
approach similar to that adopted by Tani et al. (1996)
and van Heel et al. (2000) and fit the CTF by maxi-
mizing the correlation coefficient

CCp DF1;DF2; aastð Þ

¼
X

i;j

Pcorrði; jÞ & CTF2 k; gði; jÞ;Df ði; jÞ;Csð Þ

( ),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i;j

P 2
corrði; jÞ

X

i;j

CTF4 k; gði; jÞ;Df ði; jÞ;Csð Þ
s

8

<

:

9

=

;

:

ð7Þ

Here, the scattering vector g and defocus Df have been
written as explicit functions of the pixel coordinates i; j
in the power spectrum. The maximum correlation is
found by performing a grid search of defocus values
DF1 and DF2, and astigmatic angle aast, followed by a
function maximization using the conjugate gradient
method. The fitting procedure has been implemented
in a computer program called CTFFIND3 which de-
termines CTF parameters for images from untilted
specimens.

2.2. Determination of specimen tilt axes and angle

The defocus parameters are essentially a measure of
the distance between the sample and the focal plane of
the objective lens. Therefore, tilt information can be
obtained from the defocus variation across the image.
The procedure to determine defocus parameters aver-
aged over the entire image, as discussed in the previous
section, can also be applied to a small area of the image
to find local defocus parameters. In contrast to the
previous case, the power spectra calculated from smaller
areas of the image will be much noisier, and an accurate
determination of local defocus parameters based on

Fig. 3. Definitions for the CTF parameters DF1, DF2, and aast. The
angle ag of the scattering vector g ¼ k0 " k (k, wave vector of the in-
cident wave; k0, wave vector of the scattered wave) is used in Eq. (6),
indicating the point where the CTF is evaluated.

Fig. 2. Background subtraction (a) shows a plot of a radial average of
the power spectrum obtained for image b3730 (see Table 1). Before
fitting defocus values, the smooth background has to be subtracted.
The radial average of the background-subtracted power spectrum is
shown in (b).
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Here, the scattering vector g and defocus Df have been
written as explicit functions of the pixel coordinates i; j
in the power spectrum. The maximum correlation is
found by performing a grid search of defocus values
DF1 and DF2, and astigmatic angle aast, followed by a
function maximization using the conjugate gradient
method. The fitting procedure has been implemented
in a computer program called CTFFIND3 which de-
termines CTF parameters for images from untilted
specimens.

2.2. Determination of specimen tilt axes and angle

The defocus parameters are essentially a measure of
the distance between the sample and the focal plane of
the objective lens. Therefore, tilt information can be
obtained from the defocus variation across the image.
The procedure to determine defocus parameters aver-
aged over the entire image, as discussed in the previous
section, can also be applied to a small area of the image
to find local defocus parameters. In contrast to the
previous case, the power spectra calculated from smaller
areas of the image will be much noisier, and an accurate
determination of local defocus parameters based on

Fig. 3. Definitions for the CTF parameters DF1, DF2, and aast. The
angle ag of the scattering vector g ¼ k0 " k (k, wave vector of the in-
cident wave; k0, wave vector of the scattered wave) is used in Eq. (6),
indicating the point where the CTF is evaluated.

Fig. 2. Background subtraction (a) shows a plot of a radial average of
the power spectrum obtained for image b3730 (see Table 1). Before
fitting defocus values, the smooth background has to be subtracted.
The radial average of the background-subtracted power spectrum is
shown in (b).
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Defocus gradient across the micrograph
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Fig. 6. Position dependent PhCTF determination. This graph illustrates a typical nominal ‘0 ’ tilt on our
CM200 cryo-EM!Gatan cryo-holder system. The system exhibits a systematic 6! tilt with respect to the
nominal tilt angles that, if not corrected for, causes a defocus spread of almost 3000 A! . After our
diagnostic analysis, the holder is now systematically used at a nominal "6! tilt to compensate for this
effect. However, the defocus difference between front and back of the plot of # 600 A! – perpendicular
to the tilt axis of the goniometer – is not correctable with the current set up. Moreover, due to a recent
repair of this particular holder, the nominal ‘0! ’ tilt position requires recalibration.

original micrographs. (This general algorithm can also be applied to sums of spectra of

patches of the original image or to the extracted molecular images themselves.) For each

patch, the amplitude spectrum is calculated and the resulting 2D spectrum is then high-pass

filtered to remove the characteristic background ramps associated with spectra of EM images.

Note that this filtering is performed by 2D-Fourier transforming the spectra and then

multiplying the transforms by a rotationally symmetric Gaussian high-pass filter. At the same

time, a broad Gaussian low-pass filter is applied to reduce the large amount of noise in the

direct spectra. The theoretical CTF is then fitted to the treated spectra of the patches. The full

cross-correlation coefficients between the measured spectra and theoretical CTF functions are

calculated for all reasonable defocus parameters. In this correlation calculation all spectrum

areas (and not just those of the zero crossings) contribute to the fitting procedure. The

maximum correlation coefficient indicates the correct defocus parameter.

When the image is not free of astigmatism, the elliptically shaped spectra are first aligned

with the main axes pointing vertically. This operation is performed by finding the rotational

alignment angle between each spectrum and a mirrored version of itself. Rotation of the

spectrum by half of the rotation angle then places the main axes of the ellipsoids along the

X- and Y-axes of the image frame. Another copy of the spectrum, that is orthogonal to the

first, is then anisotropically scaled along the x- and y-axes until it matches the first. Thus, not

only the orientation but also the magnitude of the ellipticity is obtained. This information is

used to elliptically average the 2D spectrum into a 1D curve, which is then fitted to a theoretical

non-astigmatic CTF curve. Our CTF correction algorithm will be published elsewhere in full

detail (Patwardhan et al. 2000b). The final CTF correction is performed on each extracted

van Heel et al., Q Rev Biophys 2000

The last parameter to be determined is the tilt angle.
An approximate value is found again by performing a
search. However, the fitting procedure is now extended
across the entire image to include all tiles. If we assume
that the entire imaged area lies in a single plane, we can
write for the defocus Df at a point x; y on the image

Df ¼ Df0 þ xð½ % x0Þ sinðuÞ % yð % y0Þ cosðuÞ' tanðcÞ:
ð9Þ

Here, x0; y0 is the center of the image where the defocus
Df0 and astigmatism values were determined in the
previous step. u is the angle between the tilt axis and the
X-axis and c is the tilt angle. The search is performed in
the interval [)65!, +65!], and a step size of 10! was
found to be sufficient in practice to find the correct tilt
angle. The final step consists of a refinement of all five
parameters (DF1, DF2, aast, c, and u) using conjugate
gradient maximization of the correlation between cal-
culated CTF and observed, background-subtracted
power spectra.

3. Results

Because the CTF is a complex function of many
variables, we have used a largely empirical approach to
extract the defocus and tilt parameters which strongly
influence the final image phases. The two major features
of the algorithm for untilted images are the background
subtraction and the full, two-dimensional fit of the
power spectrum to an unattenuated CTF.

The fitting algorithm implemented in CTFFIND3
was tested on high-resolution electron micrographs of
2D crystals used to calculate a 0.26-nm resolution pro-

jection structure of bacteriorhodopsin (Grigorieff et al.,
1995). The samples were prepared using a continuous
carbon support film, and the crystals were frozen-hy-
drated in ice. These images are ideal test objects since the
defocus parameters were refined crystallographically to
high resolution and, therefore, should represent very
close approximations to the true defocus settings. The
images were recorded at a nominal magnification of
60,000, using the liquid helium field emission electron
microscope SOFIE (Zemlin et al. (1996), Cs ¼ 2:0 mm,
acceleration voltage¼ 200 kV). All four images in the
data set contained 6000( 6000 pixels and the follow-
ing parameters were used (see input box in Fig. 4):
Amplitude contrast (A)¼ 7%, scanner pixel resolution
(DStep)¼ 7.5 lm, pixel averaging (Iave)¼ 1, tile size
(Box)¼ 128 pixels, resolution range (ResMin, Res-
Max)¼ 20–0.3 nm, defocus search range (dFMin,
dFMax, FStep)¼ 100–1000 nm in 50-nm steps. The raw
and the background-subtracted power spectra for image
b3730 are shown in Fig. 2 which provides a preliminary
validation of our background subtraction: The minima
of the background-subtracted spectrum are negative but
close to zero, and the trace falls off to zero at high res-
olution. The small deviation of the minima from zero
may at first appear surprising since the background
subtraction is merely a subtraction of a low-pass filtered
image of the original power spectrum. One would
therefore expect the minima in the background-sub-
tracted spectrum to be more negative than observed in
Fig. 2. However, the background estimated by the box
convolution in Eq. (1) is smaller than the local average
of the power spectrum for two reasons: First, the
background in the power spectrum has a slope that is
negative and becomes smaller in magnitude towards
higher resolution. This leads to an underestimate of the
background by the box convolution. Second, the box
convolution is performed on the square root of the
power spectrum, and the resulting smooth background
is subsequently squared (Eq. (1)), again giving an un-
derestimate of the average local power in the spectrum.

The results of the fits are summarized in Table 1 and
show that the defocus values were determined to be
within 10 nm, and the astigmatic angle was measured
within 5! of the crystallographic values. Fig. 6a shows a
montage of the fitted two-dimensional squared CTF and
the observed, background-subtracted power spectrum of
image b3730. There is good agreement between the two
halves of the montage. Fig. 6b shows line plots of the
background-subtracted power spectrum and the fitted
squared CTF. Though the curves appear quite different,
the zeros of the observed spectrum correspond closely to
those of the fit. Since these are the locations of the phase
reversals, we appear to have determined enough about
the CTF to understand its phase behavior. Close in-
spection of Fig. 6b suggests, however, that there is some
discrepancy between the locations of the CTF zeros

Fig. 5. Determination of tilt axis. Power spectra are calculated for each
tile along the eleven parallel lines (tiles are only indicated for the three
central lines). The angle u is searched in 2! steps to find the direction in
which the variance between the power spectra is minimized.
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Methods of CTF-correction

Single particles

• Phase flipping

• CTF multiplication

• Wiener filtering of 3D volumes (Böttcher et 
al. 1997,  Penczek et al., 1997)

• Image multiplication by CTF and Wiener 
filtration of 3D volume  (Grigorieff 1998, 
Sachse et al. 2007)

2D crystals

(S/N weighting and phase flipping)

Phase flipping vs. CTF multiplication

Restored 
by “phase flipping”

Object

In order to continue this investigation with a test object that is
similar to an actual cryo-EM image, we next calculated a noise-
free, highly defocused image of the large subunit from the E. coli
ribosome. Fig. 3(A) shows the image obtained for a defocus of
2 mm and an accelerating voltage of 300 kV. The ribosomal test
object, unlike the simpler test objects used in Figs. 1 and 2, now
consists of a continuous spectrum of spatially superimposed
Fourier components. The delocalized information therefore con-
sists of a continuum of overlapping patches, each displaced by an
amount that is determined by the gradient of g(s) at that
particular spatial frequency.

Fig. 3(B) shows the nearly perfect restoration that is achieved
with a Wiener filter when the value of the SNR is assumed to be
900. The simulations themselves are noise-free in all cases, as we
have stated previously. The stipulation of a given value of the SNR
is used only to see what the effect would be on the signal-
component of an image, due to a given value of SNR that is used in
the Wiener filter. The restoration produced with SNR ¼ 900 is
shown because the Wiener filter in this case is almost equivalent
to dividing by the CTF, which in turn is guaranteed to give perfect
recovery of the original object from a noise-free image. Never-
theless, even for data with a SNR as high as 900, low-frequency

artifacts still remain in the Wiener-filtered restoration, due to the
weakness of the filtered amplitudes at low frequencies.

A more realistic simulation of the recovery of delocalized
information that can be expected is provided by setting the SNR
equal to 0.09 (Fig. 3(C)). In this case, the CTF correction lies
somewhere between that provided by phase flipping and by
multiplying by the CTF, as we show in connection with Fig. 4. Not
at all unexpectedly, based on the simulations shown with the
simpler example in Fig. 2, the twin image is once again present
when this more realistic Wiener filter is used for CTF correction. In
fact, the twin image artifact persists even when the SNR
parameter in the Wiener filter is set to the unrealistically
optimistic value of 9 (Fig. 3(D)).

Additional understanding of how various CTF corrections
compare to one another is provided by the curves shown in
Fig. 4, which shows the CTF itself as well as three examples of the
product of the CTF and different versions of the Wiener filter. The
black curve is the CTF itself (calculated for a defocus of 2mm and
an electron energy of 300 keV), which contains sign reversals
between successive zeros. The weighting of CTF-corrected
amplitudes (i.e. the resultant ‘‘transfer function’’ for restoration)
that is obtained by phase flipping can be envisioned by converting

ARTICLE IN PRESS

Fig. 2. Comparison of the restoration of delocalized information that is achieved by phase flipping and by multiplication by the CTF. (A) A spatially bounded cross-grating
pattern is formed as the product of two perpendicular sine waves. With the size-scale set to 0.1 nm per pixel, the period is 1.3nm. (B) The image of the object in (A) that is
computed with an effective defocus of 2mm. (C) Restoration of (B) obtained by ‘‘phase flipping’’—i.e. inverting the sign of the Fourier transform of (B) in alternate zones of
the CTF. (D) Restoration of (B) computed by multiplying the Fourier transform by the original CTF. Insets show a section of the Fourier transform, with the origin near the
lower left corner.
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where E[.] denotes the expectation over an ensemble of

images.  The solution to this problem is given by so-called

Wiener filter [24]:
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Here SNR denotes the signal-to-noise ratio of the original

image and the noise (in the general case it can be frequency

dependent and given by the ratio of the respective power

spectra).  In the noiseless case (SNR " #) the Wiener filter

approximates the pseudo-inverse filter [1] defined by:

!
!
!

"

!
!
!

#

$ $

0=H(k) 0

 for 

0H(k) 

H(k)

1

=(k)F ps

Thus, it also approximates the simple inversion, as

given by Equation 3.  For the other extreme case, namely

SNR " 0, the application of the Wiener filter will

approximately correspond to the multiplication by the CTF.

In intermediate cases, depending on the value of the SNR

used, the Wiener filter will in general amplify frequencies in

those regions where CTF has moderate to large values and

suppress frequencies in regions where the CTF has small

values.  In addition, as follows from Equation 5, wherever

the CTF has zero value the filtered image will have its Fourier

amplitude set to zero.  Thus, the Wiener filtration does not

make any attempts to recover the information in the missing

frequency regions, a property that limits its appeal as a tool

for the CTF correction for EM data.  Moreover, the Wiener

filters are often criticized for excessive suppression of the

measurement noise, while performing only minor corrections

[2].

The iterative methods for the CTF corrections [2]

attempt to find an approximation (r) of an original image

such that the squared residual error is minimized over the

appropriate region of support:

|i(r) - h(r)* (r)|2 " min

Equation 7 is given in real space and * denotes convolu-

tion.  The solution is found in a recursive manner starting

from the initial approximation (i)(r) (usually a blank image).

The advantage of the iterative methods is that additional

constraints can be incorporated into the process, either

linear, in form of regularization, or non-linear, for example, as

a positivity constraint.  In some cases these additional

constraints, often referred to as a priori knowledge on the

image, can help to recover information suppressed by the

zeros of the CTF.

The presence of zeros in the CTF of the electron

microscope and the dependence of the locations of these

zeros on the defocus value suggest that the CTF correction

can be augmented by collecting a defocus series data set.

Such data, if combined in Fourier space, should for all the

practical purposes cover the whole range of frequencies.

Assuming that L defocus values %z
l
 have been used, both

the Wiener filter method and iterative methods can be used

to combine the data sets and correct for the CTF effects.

The Wiener filter for the l’th data set has the form [10, 27]:
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and the Fourier transform of the CTF corrected object is

given by

As in the case of a single defocus data set (Eqn. 5), the

spatial frequency regions corresponding to the zeros of the

CTFs are set to zero in the respective data sets.  Thus, it

becomes evident that the knowledge about the precise

settings of the defocus during data collection is essential

for this method to succeed.

The iterative method can be easily extended to the

defocus case series by having Equation 7 modified to

where w
l
 > 0 defines the relative importance of the l’th

defocus data set.  As in the case of a single defocus data

set (Eqn. 7) the solution is found  in a recursive manner

starting from the appropriate approximations 
l

(0)(x) and the

a priori knowledge about the original image can be easily

incorporated.

In the field of electron microscopy the data are

available in the form of projections of the biological

macromolecule.  Thus, in principle, the CTF correction

should be applied directly to the 2D data (i.e., original

micrographs).  Unfortunately, due to the very low signal-to-

noise ratio in cryo-EM images this method is not likely to

succeed.  Instead, the CTF correction must be applied after

all the orientation parameters were found and a 3D

reconstruction could be calculated.  At this point, due to

the heavy oversampling in Fourier space, the structure has

much higher SNR, and errors in individual projections are

(4)

(5)

(6)

(7)

(8)

(9)

(10)

1. no noise SNR -->infinity

2. pure noise SNR -->0
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should be applied directly to the 2D data (i.e., original

micrographs).  Unfortunately, due to the very low signal-to-

noise ratio in cryo-EM images this method is not likely to
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the negative lobes of the CTF curve to identical, positive lobes.
Similarly, the weighting of amplitudes that is obtained by
multiplying by the CTF can be pictured as a version of the

phase-flipped CTF in which the ‘‘bell-shaped peaks’’ are simply
more narrow. The blue curve in Fig. 4 shows the weighting of
amplitudes that would be obtained with a Wiener filter for which
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Fig. 3. Simulation of the delocalization effect in an image of the large ribosomal subunit, and examples of the restoration achieved with a Wiener filter for different levels of
the SNR. Images are not shown on the same relative scale of contrast, since the contrast after Wiener filtration depends upon the value of SNR that is used. (A) The initial
image that is obtained when phase contrast is produced by using a defocus of 2mm. (B) Restoration of the original object from the image in (A) is almost perfect when the
Wiener filter assumes that SNR(s) ¼ 900. Low frequencies are still not well represented in the restoration, however, since the CTF asymptotically goes to zero at low
resolution. (C) Simulation of image restoration when the Wiener filter assumes that SNR(s) ¼ 0.09, a value that is more realistic for cryo-EM images. (D) Restoration already
fails to recover all of the delocalized information when the Wiener filter assumes that SNR(s) ¼ 9, a value that is still unrealistically high for cryo-EM images.

Fig. 4. The phase-contrast CTF for a defocus of 2 mm and electron energy of 300 keV, and the weighting (resultant ‘‘transfer function’’) that is provided when a Weiner filter
is used for image restoration. The CTF is shown by the black curve, while the product of the CTF and the Wiener filter is shown as differently colored curves for which the
value of the SNR is identified in the insert. See the text for further explanation.
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Fourier transforms 
according to David DeRosier

What you see. What you get

Spots Excited

Spot positions Unit cell size and shape

Spot size Size of coherent domains

Intensity relative to background Signal/noise ratio

Distance to farthest spot Resolution

Amplitude and phases of spots Structure of molecules

Positions of Thon rings Amount of defocus

Ellipticity of Thon rings Amount of astigmatism

Asymmetric intensity of Thon rings Amount of instability

Direction of asymmetry Direction of instability
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