

Workshop: electron crystallography

Basel, August 4 Carsten Sachse

EMBL Single-particle cryo-EM of the machinery involved in abnormal protein aggregation

www.embl.de/research/units/scb/sachse

Structure of an Aβ amyloid fibril Structure of Tobacco Mosaic Virus

Reprinted from COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY Volume XXXVI, 1971 Printed in U.S.A.

Three-dimensional Image Reconstructions of Some Small Spherical Viruses

R. A. CROWTHER AND LINDA A. AMOS Medical Research Council, Laboratory of Molecular Biology, Cambridge, England

130

NATURE, VOL. 217, JANUARY 13, 1968

Reconstruction of Three Dimensional Structures from Electron Micrographs

by D. J. DE ROSIER A. KLUG MRC Laboratory of Molecular Biolog Hills Road, Cambridge

General principles are formulated for the objective reconstruction of a three dimensional object from a set of electron microscope images. These principles are applied to the calculation of a three dimensional density map of the tail of bacteriophage T4.

3-D objects from an EM image

With the aid of a computer, a Cambridge team have devised a powerful techniqué for reconstructing three-dimensional objects from two-dimensional photographs taken in the electron microscope. The technique promises to revolutionize the study of biological structures. Here one of the team describes its first results as applied to spherical viruses

Baker & Henderson (2001) Int.Tab.Cryst.Vol.F

Fourier theory 2D

Basics of image processing

Real space, Fourier space, convolution, lattice lines, correlation, autocorrelation

• Image formation

Contrast transfer function and application

Basics of image processing: Fourier transform

Basics of image processing: Fourier transform

Basics of image processing: Fourier transform

s Frequency tells you about image spacings

Amplitude tells you "how much" of a frequency component is present

Phase tells you "where" the frequency components are located in the image

Basics of image processing: Fourier transforms of 2D images

Basics of image processing: properties of discrete 2D Fourier transforms

binary rectangle	power spectrum not centered	rectangle rotated by 45°	rectangle rotated by 90° and translated	
power spectrum (ps)	ps intensities log transformed	ps rotated by 45°	ps rotated by 90°	
Gonzales and Woods, Digital Image Processing, 2008				

<section-header>

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT4/node2.html

Basics of image processing: Fourier filters of images

Real -->Fourier -->Real Band-pass

http://sharp.bu.edu/~slehar/fourier/fourier.html

Basics of image processing: Fourier filters of images

Real -->Fourier -->Real

Gaussian low-pass filter

 $D_{\rm si} = 10$

 $D_0=70$ $-D_0 = 40$ $D_{\rm ff} = 100$

- D(H. V) D_0

abc

FIGURE 4.40 (a) Perspective plot of an ideal lowpass-filter transfer function, (b) Filter displayed as an image, (c) Filter radial cross section.

Basics of image processing: Fourier reject filters of images

RS FS DFT (f) DFT F(f) • F(g) DFT (g) Gonzales and Woods, Digital Image Processing, 2008 Filter Result

Convolution

FIGURE 4 A two-dimensional crystal can be described as a convolution of an asymmetric unit and a two-dimensional lattice function. Here a four-cylinder molecular model represents the asymmetric unit. In a protein crystal, an asymmetric unit can be a single polypeptide or an integral multiple thereof.

Chiu et al. Biophysical Journal (1993) vol. 64 (5) pp. 1610-25

2D crystals give rise to discontinuous diffraction patterns but they have continuous lattice lines in 3D

R. Glaeser. Electron Crystallography of Biological Macromolecules - Chapter 7. (2007)

Correlation

Correlation

Fourier theory 2D

• Basics of image processing

Real space, Fourier space, convolution, lattice lines, correlation, autocorrelation

Image formation

Contrast transfer function and application

Quantitative electron cryo-microscopy: from atoms to an EM image

Cryo-EM images are recorded in underfocus

Prediction of angular distribution of elastic scattering

Thon, Zeitschrift Naturforschung 1966

Astigmatism detectable from Thon rings

Drift detectable from Thon rings

Orlova, CTF talk 2004

1970: Erickson & Klug

Contrast-transfer theory

Object transform Microscope CTF

Scattering angle α

- χ phase shift due to:
- $\boldsymbol{\lambda}$ wavelength of electrons
- C_s spherical aberration Δf defocus
- Q amplitude contrast ratio
- $Q\sim$ 7-14 % for biological specimens in ice $Q\sim$ 15-35 % for biological specimens in Uranyl Acetate

$$T_{\text{int}}^{i}(\alpha,\phi) = -T^{0}(\alpha,\phi)f(\alpha)A(\alpha)\left[\sin\chi(\alpha) + Q(\alpha)\cos\chi(\alpha)\right].$$

CTF = $\left[\sin\chi(\alpha) + Q(\alpha)\cos\chi(\alpha)\right],$

$$\chi(\alpha) = \frac{2\pi}{\lambda} \left[-C_{\rm s} \frac{\alpha^4}{4} + \Delta f \frac{\alpha^2}{2} \right]$$
(2)

where C_s is the coefficient of spherical aberration and Δf is the defocussing (positive for a weak or underfocussed lens).

Scaled amplitudes from the complete focal series plotted as a function of the common variable $u = \alpha/\lambda \sqrt{\Delta f}$. The solid curve is the theoretical transfer function for the case of pure phase contrast, $-\sin \pi \lambda u^2$. The dashed curve is the theoretical transfer function assuming 35 per cent amplitude contrast, $-[.93 \sin \pi \lambda u^2 + .35 \cos \pi \lambda u^2]$

Contrast Transfer Function

Non-tilted sample

Image

Resolution (1/Å)

Stahlberg, CTF talk 2006

Stahlberg, CTF talk 2006

Cryo-EM images are under focussed

Influence of defocus on a single point: point-spread function

Influence of defocus on 2D image

Compensation of CTF

Figure 4. Low-dose bright-field image of energy-filtered frozen-hydrated TMV at 780 nm defocus. Inset is a calculated Fourier transform of a 100 nm segment of TMV. The bar represents 50 nm.

Fig. 12. Observed and predicted one-dimensional Fourier equatorial transforms of frozen-hydrated TMV. (a) Fourier transform of the observed image with 780 nm defocus (______); Fourier transform of the predicted scattering from TMV (------). (b) Fourier transform of the observed image after CTF compensation (______); Fourier transform of the predicted scattering from TMV (------). Comparison of the observed and predicted Fourier amplitudes gave a crystallographic R factor of 0.12, where $R = \Sigma |F_{obs} - F_{pred}|/\Sigma F_{obs}$. CTFs were calculated assuming Q = 0.14. Fourier transforms were normalized to unity at zero spatial frequency. 1.9 nm resolution. Data from ref. [37].

Smith & Langmore, J Mol Biol 1992

The envelope of the CTF is significantly reduced by FEG microscopes

Table 1. Comparison of the typical parameters of a thermionic source and a FEG

	Thermionic source	Field-emission gun	
Illumination aperture β	1.6 · 10 ⁻⁴ rad	5 · 10 ⁻⁶ rad	
Lateral coherence width $r_c = 0.16 \cdot \lambda/\beta$	37 Å	1200 Å	
Brightness b	106 A cm ⁻² sr ⁻¹	109 A cm ⁻² sr ⁻¹	
Solid angle $\omega = 2\pi (1 - \cos \beta)$ $\omega \approx \pi \beta^2$	8 · 10 ⁻⁸ sr	8 · 10 ⁻¹¹ sr	
Current density in specimen plane $j = b \cdot \omega$	50 eÅ ⁻² sec ⁻¹	50 eÅ ⁻² sec ⁻¹	

CTF Envelope Defocus: 1.500000 Iveldp 0.000000 Amp: 1.000000 mp Cont: 10.00000 Evo Env: 1.00000	Data Sets —New New New
-Noise N/A: 0.000000 Const: 0.000000 Exp Coef: 1.000000 Gau Coef: 1.000000	New
- Astiomatism Angle: 0.000000 DF Diff: 0.000000 - Structure Factor Disable Emperical From File (Inten) C-film: 0.000000 - C-film: 0.000000	Parameter Memory File
Micrograph V(kV): 200 / ptv 2,333 Microscope: Default	Selo (Riti 4es , De
Display Complete COTF Amp Stigmatic SNH Ptcl Begd	

Usr Fn Usr 1+2 Display 2 None

Complete

CTFIT (EMAN)

	27/014		
	File Process Advanced Help		
	- CTF Envelope	- Data Sets	
	Defocus: 3.500000	-New	
	Ame 1 000000	New	
	mp Cont: 10.00000		
	Exp Env: 1.000000		
	Noise		
	N/A:0.000000		
	Exp Coef: 1 000000		
	Gau Coef: 1.000000	New	
U	- Astiomatism	waw Sin Dela	
	Angle: 0.000000	Parameter Memory Film	
Je	DF Diff: 0.000000	Default	
tł	Disable Emperical From File (Inten)		
bo	C-film: 0.000000		
30	Missensiek		
•	V(kV):200 7pts 2.333 Microscope: Default		
at	Cs(mm): 2.0		
		Set Rot vev De	
n	6.000		
J			
	Complete - / X	VA AZA A ALA MATATA	
S	⊙ CTF Amp 2 // \ \	VER FRANK FRANKLIN	
	Stigmatic go	4174 (118) 1811 1811 (1411)	
	SNR HE C		
	State East		
		JY 81 Y 8 Y Y Y Y A U Y F	
	Usr1+2 3-		
	-Display 2	(1)	
	None		
	Complete		CIFII (EMAIN)
			1 and the second
			No. 1
de la Cart			10
		3	
1 - Det			
			A Star
			T
			8
			8 d
			22 ⊊∛
			រ ខ្មែរ រ
			S .
			8EN
		6	<u></u> € ¥ + <u>Q</u>
			N N F L
			6
			C.

Defocus -1.5 µm

Software for CTF determination

- IMAGIC TRANSFER
- SPIDER
- EMAN CTFIT graphical interface
- MRC programs: CTFFIND3/CTFTILT2

2D crystals: S/N weighting and phase flipping

FIG. 2. Demonstration of the accuracy of the method of determining the signs of the phases by using information from a second micrograph. (a) The structure factor amplitudes calculated from a low-dose micrograph of the purple membrane as ratios (R) of their electron diffraction values, plotted against spatial frequency; they form a curve consisting of a series of maxime and minima. (b) The background-corrected intensity (I) across the optical transform of the corresponding high-dose micrograph; the positions of its maxima and minima match up almost exactly with those in (a). (c) The phase contrast transfer function appropriate to (b) (under-focus = 550 Å; spherical aberration coefficient = 1.6 mm), illustrating how the sign assignments are made.

Henderson, Ultramicroscopy 1992

Henderson & Unwin, J Mol Biol 1975

SPIDER for CTF determination

- Estimation of the defocus of each micrograph from its averaged power spectrum
- 2. Interactive determination of the defocus of each micrograph

CTFFIND3 determines CTF incl. astigmatism

Fig. 3. Definitions for the CTF parameters DF₁, DF₂, and α_{ast} . The angle α_g of the scattering vector $\boldsymbol{g} = \boldsymbol{k}' - \boldsymbol{k}$ (\boldsymbol{k} , wave vector of the incident wave; \boldsymbol{k}' , wave vector of the scattered wave) is used in Eq. (6), indicating the point where the CTF is evaluated.

Defocus gradient across the micrograph

y A

Fig. 6. Position dependent PhCTF determination. This graph illustrates a typical nominal '0' tilt on our CM200 cryo-EM/Gatan cryo-holder system. The system exhibits a systematic 6° tilt with respect to the nominal tilt angles that, if not corrected for, causes a defocus spread of almost 3000 Å. After our diagnostic analysis, the holder is now systematically used at a nominal -6° tilt to compensate for this effect. However, the defocus difference between front and back of the plot of ~ 600 Å – perpendicular to the tilt axis of the goniometer – is not correctable with the current set up. Moreover, due to a recent repair of this particular holder, the nominal '0°' tilt position requires recalibration.

Fig. 5. Determination of tilt axis. Power spectra are calculated for each tile along the eleven parallel lines (tiles are only indicated for the three central lines). The angle φ is searched in 2° steps to find the direction in which the variance between the power spectra is minimized.

CTFTILT

van Heel et al., Q Rev Biophys 2000

Mindell & Grigorieff, J Struct Biol 2003

Methods of CTF-correction

<u>2D crystals</u>

(S/N weighting and phase flipping)

Single particles

- Phase flipping
- CTF multiplication
- Wiener filtering of 3D volumes (Böttcher et al. 1997, Penczek et al., 1997)
- Image multiplication by CTF and Wiener filtration of 3D volume (Grigorieff 1998, Sachse et al. 2007)

Wiener filter

Penzcek et al., Scanning Microscopy 1997

Fig. 4. The phase-contrast CTF for a defocus of 2 μ m and electron energy of 300 keV, and the weighting (resultant "transfer function") that is provided when a Weiner filter is used for image restoration. The CTF is shown by the black curve, while the product of the CTF and the Wiener filter is shown as differently colored curves for which the value of the SNR is identified in the insert. See the text for further explanation.

Downing & Glaeser, Ultramicroscopy 2008

Fourier transforms according to David DeRosier

What you see.	What you get	
Spots	Excited	
Spot positions	Unit cell size and shape	
Spot size	Size of coherent domains	
Intensity relative to background	Signal/noise ratio	
Distance to farthest spot	Resolution	
Amplitude and phases of spots	Structure of molecules	
Positions of Thon rings	Amount of defocus	
Ellipticity of Thon rings	Amount of astigmatism	
Asymmetric intensity of Thon rings	Amount of instability	
Direction of asymmetry	Direction of instability	