

## Useful References

- Amos, L.A., Henderson, R. and Unwin, P.N.T. (1982) Prog. Biophys. Molec. Biol. 39:183-231.
- Agard, D. (1983) J. Mol. Biol. 167:849-52
- Henderson, R., Baldwin, J.M., Downing, K.H., Lepault, J. and Zemlin, F. (1986) Ultramicroscopy 19:147-178
- Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E. and Downing, K.H. (1990) J. Mol. Biol. 213:899-929.
- Havelka, W.A., Henderson, R. and Oesterhelt, D. (1995) J. Mol. Biol. 247:726-738.


## Central Section Through a 3D Transform



The Sequence of Steps-Small Images/Low Resolution


## Estimate of Tilt Axis and Angle

- Determine defocus in 4 corners of film- good choice for small tilt angles- 'CTFTILT'
- Compare distortion of lattice with that of untilted specimen- works best for higher tilt angles- 'EMTILT'



## Tilt Axis Conventions in MRC



Check the absolute hand!


## Merging and Phase Origin Refinement

- Merge CTF-corrected data in ORIGTILT
- Start with nominally untilted image set to correct phase origin
- Add images of increasing tilt and compare phases within $\Delta z^{\star} \approx(1 / 3 \times 1 /$ hhickness $)$



## Merging and Phase Origin Refinement

- By looking for best agreement this generally puts z origin at centre of mass by minimizing phase gradients
- Check for a clear minimum in refinement
- Do phase errors make sense? Are they significantly less than $90^{\circ}$ ?
- Follow by cycles of origin, tilt and CTF refinement

|  |  |  |  |  |  |  |  |  |  | 2 | 3 | 4 | 4 | 4 | 4 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 7 | 7 | 7 |  |  |  |  |  |  | 2 | 4 | 5 | 5 | 5 | 4 |  |  |
| 7 | 8 | 8 | 8 | 7 |  |  |  |  |  | 3 | 4 | 5 | 5 | 5 | 3 | 3 | 3 |
| 7 | 8 | 9 | 8 | 7 |  |  |  |  |  | 3 | 4 | 5 | 5 | 4 | 2 | 4 | 4 |
| 7 | 8 | 8 | 8 | 7 |  |  |  |  |  | 3 | 4 | 4 | 4 | 3 | 4 | 5 | 5 |
|  | 7 | 7 | 7 |  |  |  |  |  | 4 | 4 | 5 | 5 | 5 | 4 | 4 | 5 | 5 |
|  |  |  |  |  |  |  |  |  |  | 4 | 5 | 5 | 4 | 4 | 4 | 5 | 5 |
|  |  |  |  |  |  |  |  |  | 4 | 4 | 4 | 3 | 2 | 3 | 4 | 4 |  |
|  |  |  |  |  |  |  |  |  | 4 | 4 | 3 | 3 | 2 |  |  |  |  |

## Amplitude Scaling

- Correct for CTF-important if no electron diffraction data.
- Determine temperature factors to minimize $\Sigma\left(F_{\text {ref }}-k F_{\text {obs }} e^{0.25 B_{x y}\left(X^{2}+y^{2}\right)+0.25 B_{z} z^{2}}\right)$.
- Best to limit B-factors to $0<B<1000 \AA^{2}$.
- MRC program- SCALIMAMP3D



## Determination of Lattice Lines




- Can interpolate by hand
- Often best with limited and noisy data
- Automated procedures fit sinc functions at intervals of e.g. $1 /$ thickness- be very careful!
- Are there any extreme outliers (particularly in phase)
- Image amplitudes generally have a lot of scatter.


## Hand Drawing Lattice Lines



- Try to take into consideration the relationship between amplitude and phase in the complex plane
- e.g. Phases can change more rapidly along $z^{*}$ when amplitudes are small
- e.g. If phase changes by $180^{\circ}$ amplitude must pass through zero



## Automated determination of lattice lines


$\sin c(x)=\sin (\pi x) / \pi x$


- 2 D crystal $=3 \mathrm{D}$ crystal X square pulse.
- Fourier transform of 2D crystal = convolution of Fourier transform of 3D crystal with sinc function.
- MRC program LATLINE



## Automatic Lattice Line Fitting

- Least squares fitting of curves to data.
- Constraint given by profile function e.g.

- $1 / \sigma^{2}$ weighting of amplitude and phase data $\sigma=r m s$ local background or estimated phase error


## Automatic Lattice Line Fitting

- You must check the results very carefully on graphical plots
- Poorly determined parts at higher $z^{*}$ may best be deleted- these commonly have large error bars and/or unrealistically high amplitudes compared to those at lower $z^{*}$



## Calculating the Structure

- Sample lattice lines at a fine enough ( $\equiv 1 / c$ ) interval to accurately follow variations in transform- must be finer than 1/thickness.
- Sampling will give list of $h, k, I, F, \phi, \sigma_{F}, \sigma_{\phi}$.



## The Missing Cone Problem

- Usually not serious if high tilts available- $60^{\circ}$ tilts cover 87\% of reciprocal space.
- Missing data along ( $0,0,1$ ) means that each section has mean density $=0 \Rightarrow$ incorrect density profile.



## Estimating (0,0,1)

- X-ray powder diffraction
- Thin sections cut perpendicular to crystal
- Side views from folds in crystal
- Contrast profile


Distance from centre of structure

## High Resolution and Large Crystals



## High Resolution and Large Crystals

Contrast for each Fourier component varies with height of crystal- described by TILT TRANSFER FUNCTION


Specimen height


$$
T T F(\theta, p)=-2 \sin \left(c p+\gamma_{0}\right)
$$

where $c$ and $\gamma_{0}$ are constants for given $\theta$, defocus and tilt:

$$
c=\frac{2 \pi}{\lambda}\left(\frac{\theta^{2}}{2} \tan \alpha\right) ; \gamma_{\mathrm{o}}=\frac{2 \pi}{\lambda}\left(\Delta F_{\mathrm{o}} \frac{\theta^{2}}{2}-c_{\mathrm{s}} \frac{\theta^{4}}{4}\right)
$$

## Correction of CTF for Tilt

- Multiply image by TTF


$\forall \operatorname{Hin}_{\sin }$
- In practice perform convolution in Fourier space
- Unbending is still essential and interdependent with TTF correctioncycles of TTF refinement and unbending require care!
- TTBOX- reads amp and phase like MMBOX but applies TTF-correction
- The output of TTBOX consists of a list of amplitudes and phases for the Fourier components of the crystal, fully corrected for tilt, defocus and astigmatism, and ready to be merged with data from other images.





## Hiah Resolution and Larae Crystals



## Beam tilt misalignment

- Analagous to axial coma in optics
- Causes a small change in defocus and astigmatism and a resolution-dependent shift of the position of the image components.
- Defocus and astigmatism taken care of in the CTF correction.
- The image shift can be separated into a component which is proportional to the beam tilt and (resolution) ${ }^{3}$ together with a simple shift of the whole image.
- Correction for beam tilts of magnitude from 1 to 3 milliradians often necessary.
- Spot at $3.5 \AA$ A resolution typically has between $200^{\circ}$ and $400^{\circ}$ phase shift in the beam tilt direction.


$$
\Delta \alpha=-\frac{2 \pi}{\lambda} C_{\mathrm{s}} \underbrace{\theta^{2}(\theta}_{\nearrow} \cdot \boldsymbol{\theta}_{0})
$$

resolution ${ }^{3}$

## Correcting for beam tilt misalignment

- Determination of the beam tilt is done entirely from the phases.
- Two methods:
- phases of spots related within one image by the crystallographic symmetry compared with one another, or
- the phases from a new image compared with phases from images already corrected for beam tilt.
- ORIGTILT- refinement of phase origin (OX, OY) and beam tilt (TX, TY) done jointly by minimisation of the phase difference.
- Effect of beam tilt is proportional to resolution ${ }^{3}$, therefore determine (OX, OY) from the low resolution spots and (TX, TY) from high resolution spots.
- CHECK- beam tilt magnitude and direction should be similar within one imaging session when conditions have not changed
- DO THE VALUES MAKE SENSE?


## Correcting for beam tilt misalignment

- Determination of beam tilt for tilted specimens requires an iterative procedure e.g. start with merged list of $0^{\circ}$ (corrected) with $20^{\circ}$ tilts (uncorrected).
- This merged list used as the reference for preliminary refinement of beam tilt by comparing data from each image against data from all the others.
- Subsequent merges should result in beam tilt and phase origin converging to, unambiguous values with convincing phase residuals.
- Then add e.g. $45^{\circ}$ tilts with preliminary beam tilts derived by comparison with the $20^{\circ}$ merged data, followed again by iterative refinement.

| Film number | Beam tilt/milliradians |
| :--- | :--- |
| 509 | 1.9 |
| 510 | 2.3 |
| 511 | 2.0 |
| 522 | 2.4 |
| 526 | 2 |
| 527 | 3.2 |
| 549 | 3.9 |

## Final thoughts and observations

## Map Interpretation

- The missing cone and generally poorer measurements at high $z^{*}$ cause blurring along the $c$-axis.
- For $60^{\circ}$ tilts resolution is $\sim 1.5$ times worse in C-direction.
- At $20 \AA$ a 25-50 kDa protein will appear as a single blob.
- Number of blobs $\propto 1 /$ res.
- 10-7 $\AA$ resolution will reveal $\alpha$-helices.


## Map Interpretation

- Beware of data in the 4-5 $\AA$ range- these are notoriously difficult to interpret. You will probably get it wrong!
- Even well determined X-ray maps at $2.5 \AA$ resolution have been traced backwards!
- Try to use all the biochemical and genetic knowledge available to you.


## Things to Be Aware Of

- Make as many amplitude and phase measurements as you can- this will substantially reduce noise in your map
- Do not overestimate your resolution- a single spot at $4 \AA$ does not imply $4 \AA$ resolution


## Things to Be Aware Of

- Programs may have bugs.
- Check your log files for error messages
- Make sure all crystals have same thickness
- Crystals more than 1 unit cell thick are very difficult to process


## Things to Be Aware Of

- Do not use programs blindly- check that you are getting sensible and consistent results when comparing independent images
- Be patient and thorough

