Symmetries

Henning Stahlberg, Biozentrum, Uni Basel, Switzerland c-cina.org

> 2dx Workshop Basel, August 23-26, 2016

> > 1

7-2dx-2016-Symmetries.key - 22 Aug 2016

7-2dx-2016-Symmetries.key - 22 Aug 2016

Group theory

- A crystallographic space group is the mathematical group of symmetry operations which apply to both the given unit cell and the crystal array
- There are 230 possible crystallographic space groups in 3D
 65 for proteins and chiral molecules
- 17 plane groups describe all the possible symmetry arrangements in projection images of 2D crystals
- These plane groups are different (but correlate somewhat trivially) to the 17 2D space groups which describe all possible 2D crystal arrangements

7-2dx-2016-Symmetries.key - 22 Aug 2016

Symmetry of 2D crystals

- 1. An electron micrograph is a projection of the object along the direction of the electron beam.
- 2. Two-dimensional plane groups describe the projection symmetry, 17 possibilities. Listed in the Int Tab for X-ray Crystallography.
- 3. The specimen has an extension in the third dimension ("top and bottom").
- 4. Two-sided plane groups describe the symmetry of 2D crystals, 17 possibilities for biological molecules.
- 5. The smallest repeating unit, the unit cell is described by the lattice vectors a and b and the angle gamma between them.
- 6. Depending on the symmetry, the unit cell may contain multiple copies of the molecule.
- 7. In addition, non-crystallographic symmetry may add even more molecules to the unit cell.
- 8. The packing arrangement in a 2D crystal can give information about oligomeric arrangement of the protein.

igin on g	Co-ordinates: x,y; x,}+y	No.4 P8	pmg	No. 7	Origin at 2	Co-ordinates: $\pm x,y; \frac{1}{2} + x_{x}$
2 cos 2= (hx-	$\frac{k}{4}$ cos $2\pi \left(ky + \frac{k}{4}\right)$ $\frac{k}{4}$ sin $2\pi \left(ky + \frac{k}{4}\right)$	F(hk) - F(hk) - F(hk)	A~4 cos 2= B~0	$\left(hx+\frac{h}{4}\right)\cos 2\pi\left(ky-\frac{h}{4}\right)$	080 k	
21	4-2 cos 2#hx cos 2#ky	a(bk) = -a(bk) = a(bk) = -a(bk)	h = 2n $h = 2n + 1$	$A = 4 \cos 2\pi hx \cos 2\pi$ $A = -4 \sin 2\pi hx \sin 2\pi$	$ky; B \sim 0$ mky; A - B = 0 if k = 0	F(hk) - F(hk) - F(h) $F(hk) - F(hk) = -F(h)$
" 2n + 1	$B=2 \cos 2\pi hx \sin 2\pi ky = 0$ if $k=0$ $A=-2 \sin 2\pi hx \sin 2\pi ky$ $B=2 \sin 2\pi hx \cos 2\pi ky; A=B=0$ if $h=0$	$a(hk) \sim -a(hk) - \pi + a(hk) - \pi - a(hk)$	$\rho(XY) = \frac{1}{A_c} \left[F \right]$	$F(00)+2\left(\sum_{2}^{m} F(h0)\cos 2n\right)$	$\frac{\pi h X + \sum_{i=1}^{\infty} k F(0k) \cos 2\pi k Y}{\sum_{i=1}^{\infty} k - 2\pi}$	8 6 4 5 H
$(XY) = \frac{1}{A_i} \left[F(0) \right]$	$ b) + 2 \left\{ \sum_{k=1}^{m} k \left F(h0) \right \cos 2\pi h X + \sum_{2}^{m} k \left F(0k) \right \cos \left[2\pi k Y + \frac{1}{2} k \right] \right\} + \left\{ \sum_{k=1}^{m} k \sum_{k=1}^{k-\infty} k \left F(hk) \right \cos 2\pi h X \cos \left[2\pi k Y - \alpha(hk) \right] - \sum_{k=1}^{m} k \left F(hk) \right + \left\{ \sum$	$ = a(0k)] + = \sum_{k=1}^{\infty} \left\{ \sum_{k=1}^{n-1} \frac{1}{2\pi k} x \sin \left[2\pi k Y - a(hk) \right] \right\} $			$\left(\frac{2^{n}}{3},\frac{2^{n}r}{3},r^{n}r^{n}(nk)\cos 2\pi h x\cos 2\pi k\right)$	$\left(-\sum_{i=1}^{k}\sum_{j=1}^{k}F(hk)\sin 2\pi hX\sin 2\pi kY\right)$
			Pgg	No. 8	Origin at 2	$\pm x,y; _{1+x,1-y}$
rigin on m	$(0,0; \frac{1}{2}, \frac{1}{2}) + x,y; \hat{x},y $	No. 5 CM	$\frac{1}{A-4\cos 2\pi (h)}$	$x+\frac{h+k}{4}$ cos $2\pi \left(ky-\frac{h+k}{4}\right)$	<u>k</u>)	
$-4\cos^{4}2\pi\frac{h}{4}$ -4 cos ⁴ 2 $\pi\frac{h}{4}$	$\frac{k}{4}\cos 2\pi hx \cos 2\pi ky$ $\frac{k}{4}\cos 2\pi hx \sin 2\pi ky$	· · · · · · · · · · · · · · · · · · ·	$ h+k-2n \\ h+k=2n+1 $	$A-4 \cos 2\pi hx \cos 2$ $A-4 \sin 2\pi hx \sin 2$ $A-B-0 \text{ if } h-0 \text{ or}$	2#ky; B=0 n 2#ky k=0	F(hk) = F(hk) = F(hk) $F(hk) = F(hk) = -F(hk)$
+ k - 2n + k - 2n +	A=4 cos 2=hx cos 2=ky B=4 cos 2=hx sin 2=ky =0 if k=0 A=B=0	F(hk) = F(hk) = F(hk) = F(hk) = F(hk) a(hk) = -a(hk) - a(hk) = -a(hk)	$\rho(XY) - \frac{1}{A_s} \bigg[F(0) \bigg]$	$20)+2\left\{\sum_{1}^{m}h^{h-2n}F(h0)\cos 2nh\right\}$	$X + \sum_{1}^{\infty} k F(0k) \cos 2\pi k Y + \frac{1}{2} k F(0k) \cos 2\pi k F(0k) \cos 2\pi k Y + \frac{1}{2} k F(0k) \cos 2\pi k F(0k) \sin 2\pi k F(0k) \cos 2\pi k F(0k) \sin 2\pi k F(0k) F(0k) F(0k) F(0k) F(0k) F(0k) F(0$	E. E. 114-2011
$(XY) = \frac{1}{A_t} \left[F(t) \right]$	$00) + 2\left\{\sum_{j=1}^{m} h_{j}^{h-\frac{2\pi}{2}}(b) \right \cos 2\pi h X + \sum_{j=1}^{m} h_{j}^{h-\frac{2\pi}{2}}(b) \cos [2\pi h]$	$\left[r_{-a}(0k) \right] + \left[\sum_{k=1}^{n} \sum_{k=1}^{n} \left[F(hk) \right] \cos 2\pi h X \cos \left[2\pi k Y - a(hk) \right] \right]$			12-2-1 (w) cos 2002 cos 2007-	$\sum_{n=1}^{\infty} \frac{2^{k}F(hk)}{n} \sin 2\pi hX \sin 2\pi kY$
			cmm	No. 9	Origin at 2mm	$(0,0; \frac{1}{2},\frac{1}{2}) \pm x,y; \hat{x},y $
Origin at 2mm	± x,y; \$,y	No.6 , pmm	$A-8\cos^3 2\pi \frac{h+1}{4}$	k cos 2nhx cos 2nky; I	3-0	<i>i</i>
4-4 cos 2=h: B-0	c cos 2#ky	F(hk) = F(hk) = F(hk)	h+k=2n $h+k=2n+1$	A-8 cos 2=hx cos 2 A-B-0	!=ky; B~0	F(hk)-F(hk)-F(hk)
$\rho(XY) = \frac{1}{A} \left[F \right]$	$(00) + 2\left\{\sum_{1}^{\infty} kF(h0) \cos 2\pi hX + \sum_{1}^{\infty} kF(0k) \cos 2\pi kY\right\}$	$+4\sum_{1}^{n}k\sum_{j=1}^{n}kF(hk)\cos 2\pi hX\cos 2\pi kY$	$\rho(XY) - \frac{1}{A_{c}} \left[F(00) \right]$	$(1)+2\left(\sum_{2}^{\infty}kF(h0)\cos 2\pi h\lambda\right)$	$\left(+\sum_{2}^{\infty}kF(0k)\cos 2\pi kY\right)+4\sum_{1}^{\infty}k\sum_{1}^{\infty}kF(0k)$	$\frac{1}{hk}\cos 2\pi h X\cos 2\pi k Y$
A,L	369				320	

	•				MloK	1-film 2da	x (4.0.0)								
语					1	1 🖾	L								
⊗ Mic	K1-	2-2014-11-17_MloK1_cAMP/2014-11-	17_12-05-02	8 MIoK100/Mk	K10099001200	0	MIoK100/N	/lok100000	09100						
0	Þ	Evaluate Lattice	Get Space	group & Pha	seOrigin							0	• 0		•
-		Get Spacegroup & PhaseOrigin													
8		Set PhaseOrigin Manually	Output (Double	click for logbrows	ser)		Verbosity	Level: Lo	w		Results				
-	2		==== Anaconde	Python executal	ble not found.	Is it in	nstalled	??? =====			phaoril	FouFilter		-289.6	,0.3
		Generate SymMap	==== The loca	ation of Anaconda	a Python is de	fined in	Preferen	ces. ====			phaori			-289.6	,0.3
	Б.	Mask Crystal from Polygon	Symmetries to	test = ALL							DUACEON	T dono		pi	21_B
	D	Refine Params Unbend I	Stepsize and IQ Max = 3,	Phase Search Arr Resolution Max	ray Size = 2 , = 9.0	181					PRASEO	ki_done			Y
	D	Refine Params Unbend II	SPACEGROUP	Phs.Res. (#) v.other spots (90 random)	Phs.Res. (#) v.theoretica (45 random)	ox	OY	TX	TY	Target					
	P	Refine Params Unbend I (Coars	1 p1	16.6 396 40.6 198	11.9 396	-379 5	36.1	0.00	0.00	23.9					
		Refine Params Unbend II (Coars	3b p12_b	80.3 163	45.5 10	-449.8	-49.7	0.00	0.00	16.9					
	D.	Refine SpotList	4b p121 b 4a p121 a	16.7* 163 35.5 165	13.0 10 20.3 14	-289.6	0.3	0.00	0.00	16.9					
	D,	Refine Tilt from SpotSplitting	5b c12_b 5a c12_a	80.3 163 82.5 165	45.5 10 9.4 14	-449.8	-49.7 36.3	0.00	0.00	16.9					
	D,	Refine Defocus (Not Recommen	6 p222 7b p2221b 7a p2221a	68.0 526 66.6 526 61.8 526	20.3 396 40.5 396 40.9 396	-379.6 -359.3 -289.6	-143.8 -53.8 126.5	0.00	0.00	19.4 19.4 19.4	Images		0		+
	۵.	Refine Params (Only Tilted Imag	8 p22121 9 c222	31.6 526 68.0 526	20.3 396 20.3 396	-379.6	-143.8	0.00	0.00	19.4	APH: IT	nout Amp&Phs	File		
	6	Modify Image Amplitude	10 p4 11 p422 12 p4212	33.1 506 61.3 1154 30.1 1154	20.3 396 20.3 396 20.3 396	-379.5 -199.7 -379.6	36.0 36.2 -143.9	0.00	0.00	19.5 17.9 17.9					
	D,	ML-2D (DO NOT USE, OUTDATED)	13 p3 14 p312 15 p321	68.6 192 60.3 539 56.6 539	16.6 30 17.2 30	-138.0 -258.5 -109.9	-23.5 95.2 125.8	0.00	0.00	16.6 16.8 16.8					
	D.	Image Inventory	16 p6 17 p622	60.4 582 56.7 1276	20.4 396 20.3 396	-379.1 -379.3	-143.8 -143.9	0.00	0.00	19.1 17.8					
	2	Clone this Directory		* = acces	ptable	- 4									
	D	Cleanup		= possi	ibility	ed									
	D	All Parameters	OX,OY = best TX,TY = best Target = targ	t phase origin for t beam tilt for t	or this symmetry on statistics	ry taking	Friedel	weight in	nto acc	count					
	10	DEPENDENT SCRIPTS 2dx_makedirs 2dx_sym2spcgrp_sub.com	==== Best Spa ==== 2dx allo	aceGroup is pl21 space - normal er	_b nd. 2dx_allspace f	inished.4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,	,,,,,					
	51	initialize	Status								-	100	1.000	0.00	10.7
			Calc. Mag=		49743.9					Last QVAL=		2025.2	D. Contract	and.	100
			Unbend	1	IQ1 IQ2	10	3	104	105	106		QVAL	87 M P	70.55	an a
			Unb.II		62 94	7	7	50	27	25		2025.2	XX.34	K (34.0)	6.36
			MovieA				-	-	-	-			1,000,00	5. A 16	1000
			MovieB				-	-	-	-		2	1 All Street, or other	10.015	Card .
			PowerBins			[A]	1	54	12	9	7	5 3	20X2407	10.00	30.7
			Tilt Info			Defor	0	Latt	20	snen	111	Merge	States and	2000	62.00
			Grid TAxis					-48.9				20.0	- 11 A P	1000	2121
			Grid TAngle					-9.8		-		-1.4	10 Mar 10	5,0403	5.3
			Xst. TAxis				-	-8.5		-		-77.5	2.000	346.4	1200
			Xet. Tangle					-9.8		-		-1.4	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE	1000	

SPAC	CEGROUP	Phs.Res. v.other (90 ran	(#) spots ndom)	Phs.Res v.theor (45 ra	s. (#) retical andom)	OX	OY	TX	TY	Target
1	p1	16.6	396	11.9	396					
2	p2	40.6	198	20.3	396	-379.5	36.1	0.00	0.00	23.9
30	p12_b	80.3	163	45.5	10	-449.8	-49.7	0.00	0.00	16.9
Ja	piz_a	82.5	165	9.4	14	-1/3.5	36.3	0.00	0.00	17.0
4D	pizi_b	16./*	163	13.0	10	-289.6	0.3	0.00	0.00	10.9
4a	pizi a	35.5	165	20.3	14	-429.5	-53.8	0.00	0.00	17.0
50	CIZ_D	80.3	163	45.5	10	-449.8	-49.7	0.00	0.00	10.9
Sa	CIZ a	82.5	165	9.4	14	-1/3.5	30.3	0.00	0.00	17.0
0	p222	68.0	526	20.3	396	-3/9.0	-143.8	0.00	0.00	19.4
10	p2221D	00.0	526	40.5	396	-359.3	-53.8	0.00	0.00	19.4
/a	p2221a	01.8	526	40.9	396	-289.0	120.5	0.00	0.00	19.4
8	p22121	31.0	526	20.3	396	-379.0	-143.8	0.00	0.00	19.4
	CZZZ	08.0	526	20.3	396	-379.0	-143.8	0.00	0.00	19.4
10	P4	33.1	506	20.3	396	-3/9.5	30.0	0.00	0.00	19.5
11	p422	61.3	1154	20.3	396	-199.7	36.2	0.00	0.00	17.9
12	P4212	30.1	1154	20.3	390	-3/9.0	-143.9	0.00	0.00	17.9
13	p3	08.0	192	16.6	20	-138.0	-23.5	0.00	0.00	10.0
14	p312	60.3	539	10.0	30	-258.5	95.2	0.00	0.00	10.8
15	p321	50.0	539	17.2	30	-109.9	125.8	0.00	0.00	10.8
10	po	60.4	1076	20.4	396	-379.1	-143.8	0.00	0.00	19.1
DX, C	DY = bes	t phase on t beam til	= accep = shoul = possi rigin fo	ptable d be con ibility or this symmetric	symmetry	а у				

11

7-2dx-2016-Symmetries.key - 22 Aug 2016

Symmetries to test = ALL Stepsize and Phase Search Array Size = 2 , 181 IQ Max = 3, Resolution Max = 9.0 Phs.Res. (#) v.theoretical SPACECROUP Phs.Res. (#) OX OY ТΧ ΤY Target v.other spots (45 random) (90 random) _____ 1 p1 16.6 396 11.9 396 2 p2 40.6 198 20.3 396 -379.5 36.1 0.00 0.00 23.9 -49.7 3b p12_b 80.3 163 45.5 10 -449.8 0.00 0.00 16.9 3a p12_a 36.3 82.5 165 9.4 -173.5 0.00 17.0 14 0.00 16.7* -289.6 4b p121_b 0.00 0.00 163 13.0 10 0.3 16.9 -53.8 4a p121 a 35.5 165 20.3 14 -429.5 0.00 0.00 17.0 5b c12 b 80.3 163 45.5 10 -449.8 -49.7 0.00 0.00 16.9 p222 5a c12 82.5 165 9.4 14 -173.5 36.3 0.00 0.00 17.0 68.0 526 20.3 19.4 396 -379.6 -143.8 0.00 0.00 6 40.5 -359.3 7b p2221b 66.6 396 -53.8 0.00 19.4 526 0.00 40.9 396 -289.6 126.5 19.4 7a p2221a 61.8 526 0.00 0.00 8 p22121 31.6 526 20.3 396 -379.6 -143.8 0.00 0.00 19.4 9 c222 68.0 526 20.3 396 -379.6 -143.8 0.00 0.00 19.4 p4 33.1 506 396 -379.5 0.00 0.00 19.5 10 20.3 36.0 p422 20.3 36.2 0.00 61.3 1154 396 -199.7 0.00 17.9 11 30.1 1154 -379.6 12 p4212 20.3 396 -143.9 0.00 0.00 17.9 13 -138.0 0.00 68.6 192 -23.5 0.00 16.6 p3 --------14 p312 60.3 539 16.6 30 -258.5 95.2 0.00 0.00 16.8 125 15 p321 E 2 0 20 0 00 0.00 16.8 p6 16) 0.00 19.1 /hy 2 space groups? p622 17 0.00 17.8) * = acceptable 1 = should be considered = possibility OX,OY = best phase origin for this symmetry TX,TY = best beam tilt for this symmetry Target = target resid. based on statistics, taking Friedel weight into

Systematic absences

- Symmetry forbidden reflections result when a crystal has periodicity over less than one unit cell
- Axial/zonal systematic absences arise from glides/screws • > Loss of odd reflections
- Integral systematic absences arise when a centered cell is chosen ٠ > Twice as many reflections

7-2dx-2016-Symmetries.key - 22 Aug 2016

Slide by Michael Landsberg, Bribane, Australia

CHIP28 (Aqp1) in real space

7-2dx-2016-Symmetries.key - 22 Aug 2016

Other considerations

- When might symmetry fall apart?
 - Plane group symmetry rules only hold for untilted specimens
 - Astigmatism causes a non-uniform effect of the CTF on symmetry related spots, potentially making symmetry evaluation unreliable
 - Symmetry rules only hold when data are shifted to phase origin
 - Stain exclusion patterns can cause over-estimation of symmetry
 - Low resolution data may also over-estimate symmetry
- Always check for the satisfaction of sub-symmetries to help
- ALLSPACE does not check for systematic absences ٠
- Check that symmetry rules continue to hold when merging and moving up in resolution

Slide by Michael Landsberg, Bribane, Australia

7-2dx-2016-Symmetries.key - 22 Aug 2016

Further Reading

Electron Crystallography ^{of} Biological Macromolecules

> Robert M. Glaeser Kenneth Downing David DeRosier Wah Chin Joachim Frank

Available online at www.sciencedirect.com

Journal of Structural Biology

Symmetry: A guide to its application in 2D electron crystallography

Michael J. Landsberg *, Ben Hankamer *

Institute for Molecular Bioscience, Queensland Biosciences Precinct, The University of Queensland, Brisbane, Qld 4072, Australia Received 1 May 2007; received in revised form 19 June 2007; accepted 6 July 2007 Available online 17 July 2007

...also: V. Unger *et al.* "Structure determination from electron micrographs of 2d crystals"

Slide by Michael Landsberg, Bribane, Australia

19

7-2dx-2016-Symmetries.key - 22 Aug 2016