Symmetries

Henning Stahlberg,

 Biozentrum, Uni Basel, Switzerlandc-cina.org

2dx Workshop
Basel, August 23-26, 2016

Molecular symmetry

Cyclic symmetry

C6

C5 supercomplex

Dihedral symmetry

D6

D7 - GroEL
Ludike et al. Structure (2004) 12:1129-36 Icosahedral symmetry

Virus

- Begins with either por a, for a primitive cell or a face-centered cell
, This is followed by a cligit, n, indlicating the highest order of rotational

, The next two symbols indicate symmetries relative to the "main" translation axis of the oatern; if there is a miror paroenclicular to a translation axis this is the main one (or if there are tho, one of them).
- The symbols are aithar m, g, ar 1 , for mimor, glicle reflection, or nona.
- The axis of the mimor or glite reflaction is perpanticular to tha main axis ior the first letter...
- ...ancl ather parallal or titeal 120"Tn (when $n>2$) for the seconal lettor.

p2mg

Translation + Reflection $=$ Glide Reflection

Translation by $1 / 2$ unit cell combined with a reflection about a line parallel to the direction of translation

Group theory

, A crystallographic space group is the mathematical group of symmetry operations which apoly to both the givan unit call and tha crystal array
, There are 230 possible crystallographic space groups in 3D

- 65 for proteins and chiral molecules
- 17 plane groups ilescribe all the possible symmetry antangements in projection imagas of 20 crystals
, Thase plane groups are clifierent (but comelate somawhat tivially) to the 172 D) space groups which clescribe all possible 2D crytal ariangements

Symmetry of 2D crystals

Two-sided Plane Group*	Corresponding 3-dimensional space group	Projection Symmet ry
pl	P1	p1
P21	P2 (c-axis unique)	p2
P12	P2 (b-axis unique)	pm
p121	P21	pg
c12	$C 2^{1}$	cm
p222	P222	pmm
p222 ${ }_{1}$	P222 ${ }_{1}$	pmg
p22, ${ }^{2} 1$	P22, ${ }^{2} 1$	Pgg
c222	C222	crun
p4	P4	p4
p422	P422	p4m
P42 2	P42 ${ }^{2}$	p4g
$\mathrm{p} 3$	P3	p3
p312	P312	p3m1
p321	P321	p31m
p6	P6	p6
p622	P622	p6m

```
* We use here the nomenclature for the two-sided plane groups proposed
by Holser (1958). This nomenclature has the following main rules.
(a) Cell type is indicated first by a small letter, p or c.
(b) The axis perpendicular to the plane is always chosen as the z-axis.
(c) The symmetry along this axis is always described by the first
    symbol following the cell type.
t There are 80 two-sided plane groups in total, of which the l> given
    here are the onily ones not containing inversion centres or mirror
    or glide planes.
```


Symmetry of 2D crystals

1. An electron micrograph is a projection of the object along the direction of the electron beam.
2. Two-dimensional plane groups describe the projection symmetry, 17 possibilities. Listed in the Int Tab for X-ray Crystallography.
3. The specimen has an extension in the third dimension ("top and bottom").
4. Two-sided plane groups describe the symmetry of 2D crystals, 17 possibilities for biological molecules.
5. The smallest repeating unit, the unit cell is described by the lattice vectors a and b and the angle gamma between them.
6. Depending on the symmetry, the unit cell may contain multiple copies of the molecule.
7. In addition, non-crystallographic symmetry may add even more molecules to the unit cell.
8. The packing arrangement in a 2D crystal can give information about oligomeric arrangement of the protein.

Symmetry of 2D crystals

$p g g$	No. 8	Oribin at 2	$\pm\|x, y ; 1+x, 1-y\|$
$\begin{aligned} & A-4 \cos 2 \pi\left(h x+\frac{h+k}{4}\right) \cos 2 \pi\left(k y-\frac{h+k}{4}\right) \\ & B=0 \end{aligned}$			
$\begin{aligned} & h+k-2 n \\ & h+k-2 n+1 \end{aligned}$	A-4 $\cos 2 \pi h x \cos 2 n k y ;$ A- $4 \sin 2 \pi k x \sin 2 \pi k y$ $A-B-0$ if $h-0$ or $k=0$	$B-0$	$\begin{aligned} & F(h k)-F(k L)-F(k k) \\ & F(h k)-F(k k)--F(k k) \end{aligned}$

$\underline{-}$

7-2dx-2016-Symmetries.key - 22 Aug 2016

="== Best SpaceGroup is p121_b

Symmetries to test = ALL
Stepsize and Phase Search Array Size $=2,181$
IQ Max $=3$, Resolution Max $=9.0$

[^0]$O X, O Y=$ best phase origin for this symmetry
$T X, T Y=$ best beam tilt for this symmetry
Target $=$ target resid. based on statistics, taking Friedel weight into
===== Best SpaceGroup is p121_b

Systematic absences

- Symmetry forbidden reflections result when a crystal has periodicity over less than one unit cell
- Axial/zonal systematic absences arise from glides/screws > Loss of odd reflections
- Integral systematic absences arise when a centered cell is chosen > Twice as many reflections

C


```
periodicity
    b
```

Slide by Michael Landsberg, Bribane, Australia

Fourier space example - CHIP28 (Aqp1)

- $a=b, \gamma=90$
- square unit cell
- all phases $=0 / 180$
- centrosymmetric space group
- points related by 4-fold rotation are equal
- base symmetry is p4
- odd reflections absent
- spots equidistant from a* are out of phase by 180
- glide symmetry

CHIP28 (Aqp1) in real space

p4gm (P42,2)

- 4 fold rotational symmetry
- 1 pair of glide axes
- 1 pair of mirror lines
- 4-fold center of rotation
- - - . glide axis
\longrightarrow mirror line

Mitra et al. Biochem (1994) 33:12735-40

Other considerations

- When might symmetry fall apart?
- Plane group symmetry rules only hold for untilted specimens
- Astigmatism causes a non-uniform effect of the CTF on symmetry related spots, potentially making symmetry evaluation unreliable
- Symmetry rules only hold when data are shifted to phase origin
- Stain exclusion patterns can cause over-estimation of symmetry
- Low resolution data may also over-estimate symmetry
- Always check for the satisfaction of sub-symmetries to help
- ALLSPACE does not check for systematic absences
- Check that symmetry rules continue to hold when merging and moving up in resolution

17 7-2dx-2016-Symmetries.key - 22 Aug 2016

Further Reading

[^0]: * = acceptable
 ! = should be considered
 = possibility

